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ABSTRACT

In recent times, researchers have proposed numerous ap-
proaches that allow smartphones to determine user current lo-
cations (e.g., home, office, railway station, restaurant, street,
supermarket etc.) and their activities (such as sitting, walk-
ing, running, bicycling, driving, cutting bread, making cof-
fee, watching television, working at laptop, taking lunch, us-
ing water tap, brushing teeth, flushing toilet etc.) in real-time.
But, to infer much richer story of context-aware applications,
it is necessary to recognize the smartphone surfaces - for ex-
ample on the sofa, inside the backpack, on the plastic chair,
in a drawer or in your pant-pocket. This paper presents Sur-
faceSense, a two-tier, simple, inexpensive placement-aware
technique, that uses smartphone’s embedded accelerometer,
gyroscope, magnetometer, microphone and proximity sensor
to infer where phone is placed. It does not require any exter-
nal hardware and provides 91.75% recognition accuracy on
13 different surfaces.

CCS Concepts

•Human-centered computing∼Ubiquitous and mobile com-
puting •Computing methodologies∼Machine learning algo-
rithms.

Author Keywords

Context-aware computing; surface detection; smartphone
sensors; machine learning and pattern recognition.

1. INTRODUCTION

Of late, smartphone usage trend is increasing at a rapid speed,
and at the same time, mobile devices are becoming really
smarter day-by-day. According to eMarketer statistics1, there
was almost 1 billion smartphone users all over the world in
2012 and by 2014, it’ll be nearly 1.75 billion. It is expected
that smartphone adoption will continue on a fast-paced trajec-
tory through 2017. At the same time, smartphones are becom-
ing really smarter day-by-day. With the proliferation of elec-
tronics technology, it is now possible to embed a larger num-
ber of sophisticated and complex sensors (such as accelerom-
eter, gyroscope, magnetometer, ambient light sensor, GPS,

1http://www.emarketer.com/Article/Smartphone-Users-
Worldwide-Will-Total-175-Billion-2014/1010536
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proximity sensor, humidity sensor, temperature sensor, pres-
sure sensor, camera, microphone etc.) in mobile-phones. By
leveraging mobile sensing capabilities, researchers and engi-
neers are trying to develop several effective and interesting
context-aware applications.

Now-a-days, everyone carries their phone with them almost
all time and in all places. Therefore, smartphone became
ubiquitous in nature. Presently, mobile devices know little
about the context in which they operate and so, user takes
responsibility for managing their behavior to fit with the cur-
rent environment. Performing these settings manually is an
extra burden to users. For example, if user enters into a class-
room, she has to manually set her cell-phone into silent mode.
To provide intelligent supports to users, researchers are fo-
cusing on the development of context-awareness into mobile
devices such that it should automatically adapt with user’s
changing environment or context[13][14]. There are two per-
spectives in context-aware applications, that is, user’s context
and phone’s context. The user’s context mainly focus on de-
tection of user’s current location (e.g., home, office, railway
station, restaurant, street, supermarket etc.)[10][11] and their
real-time activities (such as sitting, walking, running, bicy-
cling, driving, cutting bread, making coffee, watching televi-
sion, working at laptop, taking lunch, using water tap, brush-
ing teeth etc.)[7][8][9] using smartphone.

So far, its all about user’s context detection. But, to under-
stand a detail analysis of context aware applications, it is also
important to indentify phone’s context, that is, on the sofa,
inside the backpack, on the plastic chair, in a drawer or in
your pant-pocket. Automatic detection of smartphone’s con-
text has several advantages. For example, (a) if phone is in
pocket, then it automatically turns off the display and locks
it to prevent pocket-dialing; (b) if cell-phone is in backpack,
then phone should ring at the highest volume at the time of
incoming call. Similar setting is desirable, if it is on bed
or sofa; (c) in pant-pocket location, vibration is sufficient
to draw user’s attention; (d) if phone is on hard surface like
wooden table or metal cabinet, then vibration may cause dam-
age in phone. In this case, only ringing is enough; (e) if phone
is put in drawer, it is reasonable to assume that in near future,
phone’ll not be used. So, it can go to the power saving mode;
(f) if phone is in pocket, then don’t activate pollution sensor;
(g) it also helps to detect user’s context. For instance, when
a phone is on table, the microphone may be given the high-
est priority to estimate user’s surrounding environment from
ambient sound.

In this paper, we have two objectives. First objective is to
understand where people normally keep their phones across
various contexts such as at home, office-place, driving, sleep-



ing etc. For this purpose, we carried out a user study and
identified 13 different phone placements like wooden table,
soft-bed, glass table, backpack, plastic chair, cart-box, fab-
ric chair, phone holder, metal chair, wooden-drawer, metal
drawer, pant’s pocket, and user’s hand.

In our second objective, we mainly focus on how to identify
these locations automatically using phone’s inbuilt sensors.
The automatic sensing of phone’s context has several chal-
lenging issues: which are the most useful sensors to build
low cost and robust context inference system? how to fuse
multi-sensor data? which are the most effective feature-set?
which machine learning algorithm provides reliable results?
what is the trade-off between inference accuracy and power
consumption? what about processing-time and memory re-
quirement? how does system response in noisy environment?

Considering all these challenges, in this paper, we present
SurfaceSense, a scalable phone’s context sensing framework,
to recognize 13 different phone’s placements using phone’s
embedded accelerometer, gyroscope, magnetometer, micro-
phone and proximity sensor. Our proposed technique primar-
ily works in two steps. First step identifies that there is a
change in phone’s placement, and second step detects phone’s
current location. To understand the change in phone’s place-
ment, we proposed a simple threshold based algorithm on
tri-axial accelerometer signal and it is running continuously
as a back-ground service. When change in phone’s place-
ment is detected, phone vibrates for four seconds and dur-
ing the vibration, accelerometer and gyroscope record motion
data, magnetometer records magnetic field strength, proxim-
ity sensor measures the presence of nearby objects at differ-
ent distance levels, and microphone captures phone’s vibra-
tion echoes. Once sensor data collection is completed, data
are processed to identify those surfaces. The surface recogni-
tion procedure is basically a two-tier hierarchical classifica-
tion approach. In the first and second level, a simple ‘if-else’
rule-based reasoning module is used on the basis of proximity
and magnetometer sensor data pattern to categorized surfaces
into four subgroups, that is, metal and non-metal inner sur-
faces, metal and non-metal outer surfaces. Then, extracted
features from accelerometer and gyroscope sensor data and
recorded vibration echoes are fed into four Random Forest
(RF) classifiers to infer surfaces from each group. Note that,
there is one RF classifier for each subgroup.

In particular, key contributions of this paper are summarized
as follows:

1. We present the system architecture of SurfaceSense, which
follows two-tier hierarchical classification approach, to
recognize 13 different phone placements using smart-
phone’s built-in sensors with 91.75% accuracy. The ad-
vantage of our proposed method is that it requires a less
number of surface candidates to build the classifier module
for each subgroup and reduces overall complexity.

2. We propose a simple threshold based algorithm using ac-
celerometer signal to detect change in phone placement.

3. We have implemented SurfaceSense system architecture as
an Android application on the Samsung Galaxy S4 and an-

alyzed the resource consumption profile in terms of CPU
and Memory usage.

The remainder of the paper is structured as follows: Sec-
tion 2 describes related work on phone placement recogni-
tion. In Section 3, a brief phone placement study has been
presented. The Section 4 describes SurfaceSense system ar-
chitecture and Section 5 focuses on the experimental results.
The Section 6 details the implementation of SurfaceSense as
an Android App. Finally, Section 7 concludes the paper.

2. RELATED WORKS

Phone context sensing is an active research field. So far,
various approaches have been proposed using phone’s em-
bedded sensors and sometimes, with the help of external
hardware. Harrison et al. [2] identified proximity ma-
terials of mobile devices using multi-spectral optical sen-
sor. In their approach, different LEDs (i.e. infrared, red,
green, blue and ultraviolet) were used to artificially illumi-
nate the target material and photo-register measured the re-
flected light properties (i.e. wavelength). The experimen-
tal result showed 86.9% placement-detection accuracy for 27
different test placements. This approach consumes less power
(∼20 mA) and faster enough (took 5 sec). In [5], the au-
thors built Phoneprioception model with 85% accuracy us-
ing experience sampling method (ESM) to infer phone place-
ments. They also demonstrated that reasonably accurate clas-
sification is possible using proximity sensor, light sensor, and
multi-spectral sensor. F. Wahl et al.[15] presented RFID tag
based phone placement inferring method. In their experi-
ment, they placed RFID tags at pant, table, jacket and bag.
Smartphone’s built-in NFC reader automatically scans RFID
tags when phone passes these sites and recognizes the places
with an average accuracy of 80%.

The methods described in paper [2] [5] and [15], demand
some external hardware setup. But, it would be much better
and robust, if cell-phone’s inbuilt sensors (such as accelerom-
eter, gyroscope, microphone, proximity sensors, magnetome-
ter etc.) can be used to infer phone surface. Keeping this in
mind, Cho et al. [4] proposed VibePhone where extracted
Jigsaw and time histogram features from vibration generated
acceleration readings are used as input to the SVM classi-
fier that recognized six contract surfaces (i.e. sofas, plastic
tables, wooden tables, hands, backpacks, and pants pock-
ets) with 85% accuracy. In [6], S. Hwang et al. proposed
VibroTactor, an easy and inexpensive solution, by analyz-
ing smartphone’s microphone captured acoustic signal gen-
erated when the mobile device vibrates. They derived several
characteristics (such as peak count, peak intensity, peak fre-
quency, and skewness) from spectrograms of vibration echoes
on different placements. These features are fed to the RBF
classifier that achieves recognition rate of 91% in 12 different
real-world placement sets. Kunze et al.[1] proposed a sym-
bolic phone location method based on active sampling of vi-
bration generated motion data captured by accelerometer and
‘beep’ sound signatures. They achieved recognition rates of
up to 81% for 35 trained locations and 86% for 12 abstract
locations. In paper [16], J. Yang et al. demonstrated a low
cost solution using smartphone embedded proximity (IR) and



light sensor to detect ‘in pocket’, ‘in bag’, ‘out of pocket’
and ‘out of bag’. The average accuracy of their demo proto-
type is above 98% and it consumes less than ∼6mW power
for collecting sensor readings. Recently, I. Diaconita et al.
[17] presented an acoustic probing based approach to detect
‘in a backpack’, ‘on desk’, ‘in user’s hand’ and ‘in user’s
pocket’. In their approach, mobile phone emits and records
short bursts of inaudible audio signals while it is placed at
above mentioned positions. The differences in signal attenu-
ation reveal the nature of the material surrounding the mobile
phones. They performed this experiment in various environ-
ments such as office, bus, train, outdoors etc. For identifica-
tion purpose, they extracted MFCC, DMFCC and Band En-
ergy (BE) features from the recorded audio signal. Finally,
they achieved 97% and 96% classification accuracy using K-
Nearest Neighbors and Random Forest respectively.

3. PHONE PLACEMENT STUDY

To understand where people commonly keep their phones in
everyday life, we interviewed 92 participants (60 male and
32 female), all aged between 20-38 (Mean = 29). They were
primarily graduate, post-graduate students in our university’s
information technology department. They are all well experi-
enced with smartphones. All of them were given a compensa-
tion for their time. We asked them two questions: (a) where
they normally keep their phones in five different contexts like,
in home while awake, in home while sleeping, at office, driv-
ing and walking around; (b) how they decide where to put
their phone. Table 1 shows where people put their phones
across various activities. We were surprised that in this study
none mentioned belt-pouch as a choice for carrying mobile
phone while they are walking or driving. However, due to the
increased size (width and height) of the latest smart phones,
it is impractical to carry the phone in belt-pouch. In fact, belt-
pouches are not commercially available for many latest smart
phones. From this phone placement study, we got total 13
surfaces and decision factors for selecting these surfaces are
easy to access notifications, phone’s safety, physical comfort,
minimize distraction, common habit, near by charger socket
and so on.

Table 1. Phone placements during different activities.

Activities Phone Placements

Awake at home

wooden table (62%), glass table (17%),
in hand (13%),plastic chair (3%),
fabric chair (2%), metal chair (2%),
cardboard-box(1%)

Sleeping at home
bed (78%), wooden table (9%),
glass table (6%), wooden drawer (3%),
phone holder (2%), metal drawer (1%)

Working at office
wooden table (81%), pant’s pocket (12%),
in hand (7%)

Driving pant’s pocket (94%), backpack (6%)
Walking pant’s pocket (91%), backpack (9%)

4. SURFACESENSE FRAMEWORK

The SurfaceSense system architecture fundamentally com-
prises two parts: (1) change in phone placement detection
and (2) phone’s context sensing. The working of the said two
modules are discussed in the following sub-sections.

4.1. Change in Phone Placement Detection

Detection of change in phone placement means how phone
will automatically understand that user has changed its cur-
rent position. For example, user is taking the phone placed on
the table and putting it in his pant’s pocket. In this case, phone
position has changed from on the table to inside pant’s pocket.
In this paper, the proposed change in phone placement detec-
tion algorithm will run continuously as a background service.
It is a simple threshold based algorithm relying on the cap-
tured data of the smartphone’s tri-axial accelerometer sensor.
Since this algorithm will run continuously, phone’s battery
consumption is an important concern. To optimize the power
consumption of the device, we use only the accelerometer sig-
nal as it is the most informative sensor regarding the change
in phone placement detection.
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Figure 1. Flow diagram of the change in phone placement detection

algorithm.

Figure 1 represents the flow-diagram of change in phone
placement detection algorithm. To understand that there is a
change in phone placement, we continuously analyze t sec of
accelerometer signal (Ax, Ay and Az) window in real-time.
If change in each axis acceleration (∆Ax, ∆Ay and ∆Az)
exceeds threshold Th1, then we calculate the norm of the cur-
rent accelerometer signal as described in Equation (1).

|AT | =
√

|Ax|2 + |Ay|2 + |Az|2 (1)



Figure 2. Flow diagram of phone’s context sensing algorithm.

(a) (b)
Figure 3. Magnetometer readings for (a) hand-holding position and (b) metal chair position.

Now, check that if |AT | is within the range of Th2 and Th3,
that is, Th2≤|AT |≤Th3 and two consecutive |AT | satisfy
this criteria within a given time interval of δ msec (δ≪t),
then a counter increases every time and change in phone
placement is suspected. In the final step, if counter status is
Th4≤counter≤Th5 after δ sec window, then there is a real
change in phone placement.

If counter < Th4, it means phone is in the same place. On
the other hand, if counter > Th5, then there is a chance that

user is doing other activities like walking, running, going up
or down the stairs.

4.2. Phone’s Context Sensing

If change in phone placement is detected, then phone’s con-
text sensing module starts working. This module fundamen-
tally comprises three parts: (1) surface categorization using
proximity and magnetometer sensors (2) feature extraction
from microphone, accelerometer and gyroscope sensor data
(3) Random Forest classifier to recognize phone placement.



(a) (b)

Figure 4. Spectrogram of vibration echoes for (a) hand holding and (b) pant’s pocket position.

(a) (b)

Figure 5. Accelerometer readings for (a) hand holding and (b) pant’s pocket position.

(a) (b)

Figure 6. Gyroscope reading for (a) hand holding and (b) pant’s pocket position.

Figure 2 represents the flow-diagram of phone’s context sens-
ing algorithm. The details of each part of this algorithm is
discussed below.

4.2.1. Surface Categorization

This surface categorization works in two levels. In the first
level, proximity sensor is employed and on the basis of prox-

imity sensor data, phone placements are categorized into two
broad groups: inner (i.e. pant’s pocket, backpack etc.) and
outer (i.e. plastic chair, wooden table etc.) surfaces. From the
experiment, it is observed that proximity sensor of Samsung
Galaxy S4 returns 0.00c.m. as the average value of proxim-
ity distance for inner surfaces and in case of outer surfaces,
it is 8.00 c.m. Therefore, Th6 = 5 c.m. (empirically) is con-



sidered as a threshold to distinguish between inner and outer
surfaces.

In the second level, magnetometer sensor is used to further
categorize each group into two subgroups : metal and non-
metal surfaces. To be specific, non-metal inner surfaces are
pant’s pocket, backpack, and wooden drawer; metal inner sur-
face is metal drawer; non-metal outer surfaces are wooden ta-
ble, soft-bed, glass table, plastic chair, cart-box, fabric chair,
phone holder, and user’s hand; metal outer surface is metal
chair. In the experiment, we logged magnetometer sensor
data at the sampling rate of 100Hz. For non-metal surfaces,
strength of magnetic field varies between 15 µT to 50 µT and
in case of metal surfaces, it is approximately 65 µT to 200
µT. For example, Figure 3(a) and (b) represent magnetometer
readings related to the positions of hand-holding and metal
chair respectively. Here, we choose Th7 = 62 µT as a thresh-
old to distinguish metal surfaces from non-metal one.

4.2.2. Feature Extraction

During vibration phase, the device itself records the vibration
echoes using microphone at 44.1 KHz sampling frequency
and motion data with the help of accelerometer and gyroscope
sensors at 100 Hz sampling frequency. These vibration sound
and motion data vary depending on surfaces. For example,
Figure 4(a) and (b) represent different sound signatures for
hand-holding and pant’s pocket positions respectively. Fig-
ure 5(a) and (b) depict the magnitude of accelerometer raw
values for two smartphone positions, hand-holding and pant’s
pocket. Likewise, Figure 6(a) and (b) display two plots of gy-
roscope readings related to hand-holding and pant’s pocket
positions. To characterize different surfaces, we extract time
and frequency domain features from recorded signals. Fea-
ture extraction step consists of three parts: (a) vibration sound
features (b) accelerometer features and (c) gyroscope fea-
tures.

Vibration Sound Features

This sound fingerprint is processed in frames with a 20 msec
sliding window and 50% overlap. Each window is smoothed
with a hamming filter and the following features are ex-
tracted. [1 - 2]: zero crossing rate, short-time energy (time
domain); [3 - 6]: spectral flux, spectral rolloff, spectral cen-
troid, and Spectral entropy (frequency domain). For each 6D
feature vector, the standard deviation is calculated over all
windows.

Accelerometer Features

The 3 axis accelerometer readings are divided into frames
and we find global vertical (the direction of gravity) and hori-
zontal (perpendicular to the direction of gravity) components
from each frame to eliminate smartphone’s different orienta-
tion effects in the feature set. To do this, we use a simple
normalization scheme as described in paper [12]. The algo-
rithm works as follows.

Let the raw accelerometer readings in a frame be ai =
[ax(i), ay(i), az(i)], i = 1,...,n, where ax(i), ay(i), and az(i)
are the accelerometer readings along x, y and z axis respec-
tively and n is the number of accelerometer readings in a
frame. Note that, a non-overlapping rectangular window is

used in the framing process and window size is 320 msec. We
obtain vertical acceleration vector p corresponding to gravity
as p = [mx, my , mz], where mx, my and mz are the aver-

age values in each axis, that is, mx = 1

n

n
∑

i=1

ax(i). The dy-

namic component of ai, caused by the user’s motion rather
than gravity, is represented as di = [ax(i) − mx, ay(i) −
my , az(i) − mz]. Then using vector dot product, vertical

component vi is computed as vi = (di•p
p•p

)p. The horizontal

component, hi, is calculated as hi = (di − vi). Finally, we
use ‖ hi ‖ and ‖ vi ‖ as horizontal and vertical components
to extract following features. [1 - 8]: mean, std, min and max
of vertical and horizontal acceleration respectively (time do-
main); [9 - 16]: min, max, kurtosis and skewness of vertical
and horizontal acceleration respectively (frequency domain).
For each 16D feature vector, the standard deviation is calcu-
lated over all windows.

Gyroscope Features

We consider only time domain features from the magnitude
of gyroscope readings, that is, [1 - 4]: mean, std, min and
max. Here, we use a non-overlapping rectangular window of
size 320 msec for framing purpose. Finally, to get 4D fea-
ture vector from recorded gyroscope readings, the standard
deviation is computed over all windows.

Figure 7. The measurement of information gain for 26 features.

Ultimately, we have total 26 features, that is, our current fea-
ture vector is of 26 dimensions (6D + 16D + 4D). In machine
learning, the selection of an appropriate set of features is a
key step in designing a robust classifier. Here, we applied
‘information gain’ based feature selection method, provided
by WEKA tool, to reduce the dimensionality of feature space
by eliminating redundant features. Mathematically, informa-
tion gain is defined as

IG = H(X)−H(X|Y ) (2)

In equation (1), H(X) is the entropy of a feature X and
H(X|Y ) is the entropy of X , after observing Y . They
are defined as H(X) = −

∑

i

P (xi)log(P (xi)) and H(X|Y )

= −
∑

j

P (yj)
∑

i

P (xi|yj)log(P (xi|yj)); where P (xi) and

P (xi|yj) are the prior and posterior probabilities of X , re-
spectively. Information gain helps classifier to improve pre-
diction performance, reduces over-fitting and minimizes the
training time. Figure 7 shows the measure of information



gain (IG) for different features and to select the most effec-
tive features, we set IG = 8.00 as threshold. Hence, the most
relevant features according to information gain are zero cross-
ing rate, short-time energy, spectral centroid, spectral entropy,
min. of FFT amplitude along horizontal accelerometer com-
ponent, and min. of gyroscope amplitude, which are used to
train and test our classification model.

4.2.3. Classifier

We use Random Forest (RF) classifier [3], provided by
WEKA tool2, to recognize phone placements. RF is an en-
semble learning method for classification that operates by
constructing a multitude of decision trees at training time and
outputting the class that is determined by a majority vote of
the trees. We preferred Random Forest because it is fast and
efficient for training, and more importantly, it is computa-
tionally much lighter than other classifiers. Note that, com-
putational time of RF is O(T (MN log(N)), where T is the
number of trees in the ensemble, M is the number of features
and N is the number of samples in the data set.

To detect phone’s current context, we used four Random
Forest classifiers. As per Fig.2, Random Forest1 for non-
metal inner surfaces, Random Forest2 for metal inner sur-
faces, Random Forest3 for non-metal outer surfaces, and Ran-
dom Forest4 for metal outer surfaces. The basic difference
between these classifiers is that they are trained with differ-
ent datasets. For example, Random Forest1 is trained with
a dataset which belongs to non-metal inner surface group,
whereas, dataset of Random Forest2 belongs to the metal in-
ner surface group.

5. EXPERIMENTS

5.1. Performance of Change in Phone Placement Detec-

tion Module

We implemented change in phone placement detection mod-
ule using Samsung Galaxy S4 Android smartphone and we
capture its accelerometer data at 100 Hz sampling frequency.
Time window (t), data interval (δ) and threshold setting are
an essential part of our algorithm as shown in Fig.1. We ana-
lyzed accelerometer pattern from 10 participants in different
phone placement changing scenarios and set t = 2 sec, Th1

= 2.5 m/sec2, Th2 = 11 m/sec2, Th3 = 16 m/sec2, δ = 250
msec, Th4 = 1 and Th5 = 8 after conducting experiments. Ul-
timately, we achieved 71.24% accuracy to detect the change
in phone placement.

5.2. Performance of Phone’s Context Sensing Module

5.2.1. Data Collection

For the experiments, we use Samsung Galaxy S4 GT-
I9500 Android smartphone which has inbuilt microphone,
accelerometer, gyroscope, magnetometer and proximity sen-
sors. To collect training and test dataset, we tried for three
days in lab environment with Galaxy S4 phone on 13 dif-
ferent surfaces. For each surface, we vibrated the phone for
4 seconds and recorded vibration sound using microphone
at 44.1 KHz sampling rate, motion data using accelerome-
ter and gyroscope at 100 Hz sampling frequency, magnetic

2http://www.cs.waikato.ac.nz/ml/weka/

field strength using magnetometer at 100 Hz sampling rate
and proximity distance using proximity sensor at a sampling
frequency of 10 Hz. We repeated this procedure 80 times
for each surface with different phone orientations. In this
way, we collected total 1040 samples (80 × 13) and divided
it into four datasets, that is, dataset1 for Random Forest1,
dataset2 for Random Forest2, dataset3 for Random Forest3
and dataset4 for Random Forest4. The dataset1 contains 240
samples from pant’s pocket, backpack, and wooden drawer;
dataset2 contains 80 samples from metal drawer; dataset3
contains 640 samples from wooden table, soft-bed, glass ta-
ble, plastic chair, cart-box, fabric chair, phone holder, and
user’s hand; dataset4 contains 80 samples from metal chair.

5.2.2. Classification Results

We split each dataset into three subsets for conducting three
fold cross validation test. Table 2 represents the overall per-
formance of SurfaceSense system. The average accuracy
stands at 91.75%, with more than half of the phone place-
ments achieving accuracies over 90%. From our result, it is
observable that soft and hard surfaces can be distinguished
with good accuracy, but it is quite difficult to recognize sev-
eral similarly hard surfaces (e.g. wooden table and glass ta-
ble). However, this is an excellent outcome with respect to
the results of few previous works [1],[4],[6] and [16].

Table 2. Performance evaluation of 13 phone placement detection. The
average accuracy is 91.75%

Placements Accuracy Confused Surfaces

Pant’s pocket 98.82% backpack (1.18%)
Backpack 97.21% pant’s pocket (2.79%)
Wooden drawer 100% -
Metal drawer 100% -

Wooden table 78.43%
glass table (16.61%),
card-board box (4.96%)

Glass table 69.41%
wooden table (25.12%),
plastic chair (5.47%)

Card-board box 78.88%
glass table (13.52%),
plastic chair (3.9%),
wooden table (3.7%)

Plastic chair 95.2%
glass table (3.2%),
card-board box (1.6%)

Soft-bed 86.37% fabric chair (13.63%)
Fabric chair 88.54% soft-bed (11.46%)
Phone holder 100% -
User’s hand 100% -
Metal Chair 100% -

6. SURFACESENSE ANDROID APP

We have developed SurfaceSense system as an Android app
in Samsung Galaxy S4. The main components, as de-
scribed in ‘SurfaceSense Framework’ section, were fully im-
plemented in Java SE 7 and successfully running on the An-
droid smartphone. It took almost 22.35 seconds to correctly
detect a phone-placement. We also measured the CPU, mem-
ory, and power consumption footprints of SurfaceSense app
on Galaxy S4 with the help of ‘Power Tutor’ and ‘OS Mon-
itor’ applications, available at Google Play Store. The CPU
usage is less than 4% during idle state and on average of 14%



at the processing time. The memory consumption is ∼7.38
MB during silence and reaches ∼12.26 MB during running
period. The average power consumption for sensor reading is
less than 18.76mW.

7. CONCLUSIONS

We presented SurfaceSense, which is inexpensive, calibration
free, and does not demand any external hardware. It only
requires phone’s build-in accelerometer, gyroscope, magne-
tometer, microphone and proximity sensors. This placement
aware technique can be applied easily to develop various
context-aware applications. Our proposed method provides
almost 91.75% accuracy to recognize 13 different phone
placements. One technical issue is that we did our experi-
ment with plastic covered phone, but recognition rate may be
affected by the presence of rubber cover or a leather cover.
In future, we’ll experiment our algorithm (1) with different
mobile devices except Samsung Galaxy S4 and (2) in noisy
environment to test its feasibility at high scale.
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