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Abstract

Of late, mobile and wearable devices such as smartphones and smartwatches have cre-
ated a rapid impact on almost every aspect of our social and working life due to their
ubiquity, pervasiveness, and portability. Improvements in computing power and sensory
capabilities of these devices not only aid in creating the opportunities to implement a
much wider variety of applications but also enable the development of smarter and more
efficient interactions.

The objective of this dissertation is to enhance the user interactions with smartphones
as well as smartwatches. First, we have explored sensor-based mobile interactions in two
directions: phone’s context-aware mobile interaction and around device interaction for
efficient text input. Then we have investigated how text input interface of a smartwatch
can be further improved for efficient typing. Finally, we have attempted on the expansion
of smartwatch touch interface from touch screen to side of the device using pressure
sensors to overcome the limited interaction space (i.e. diminutive screen).

In the case of phone’s context-aware mobile interaction, we attempt to recognize
different phone’s placements (like pant’s pocket, on the table etc.) using its inbuilt
sensors. We show that different applications can be configured dynamically based on
the identified phone’s position to enhance mobile interaction.

Next, we propose around device interaction (ADI) based text input mechanism for
smartphones to overcome the challenges of virtual keyboard based typing, for example,
long visual search time and fat-finger issue.

To enable a better text entry mechanism with smartwatches, we introduce two text
entry approaches: ETAO keyboard and 3D typing. In ETAO keyboard, a user can
select most frequent characters with a single tap and remaining characters, numbers and
symbols with two taps. With 3D typing, users can write text just by drawing character
gesture above the watch face. It is a touchless text input approach.

Last, this thesis describes the design, implementation and evaluation of pressure sen-

sors based smartwatch interactions like panning, zooming, rotation, scrolling, etc.

Keywords: Mobile and Wearable Devices, Interactions, Context-Aware Computing,

Text Entry Interfaces, Sensors.
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Chapter 1

Introduction

Of late, mobile devices like smartphones and wearable devices like smartwatches have
become the most popular computing devices at the consumer level. Their usage trend is
also increasing at a rapid speed. According to eMarketer statistics', there were around
1 billion smartphone users all over the world in 2012 and by 2014, it reached nearly 1.75
billion. It is expected that smartphone adoption will continue on a fast-paced trajectory
through 2017. Similarly, NextMarket Insights? reported a sale of around 15 million

smartwatches worldwide, and this number is expected to increase.

Now-a-days people carry their phones in pocket and wear the watch on their wrist
almost round the clock and in all places due to the tremendous affordability, flexibility,
accessibility, and portability of these devices. In fact, we may claim that smartphones
and smartwatches have truely become ubiquitous in nature. These devices are not only
a communication and instant notification management tool, but they are also used for
location-based services [26] [27], social activities [28] [29] [30], health care services [31] and
so on. There is no doubt that we are gradually moving toward Mark Weiser’s envision

[32] - "The technology required for ubiquitous computing comes in three parts: cheap,

"http:/ /www.emarketer.com /article/smartphone-users-worldwide-will-total-175-billion-
2014/1010536
http://bgr.com/2013/09/27 /smartwatch-sales-forecast-2020/
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low-power computers that include equally convenient displays, software for ubiquitous

applications and a network that ties them all together."

In 1984, the Motorola DynaTAC 8000x! (see Fig.1.1(a)) was the first portable cellular
phone. In 1992, IBM came up with a more refined version of the phone and launched
IBM Simon? ((see Fig.1.1(b))) which was the first touch screen mobile phone. It was
able to make and receive calls, send faxes and emails, and more. IBM Simon is the
first device that could really be referred to as a smartphone. Revolutionary change in
smartphone market came in the year 2007 when Apple Inc. introduced the iPhone?,
one of the first smartphones to use a multi-touch interface and a large touchscreen for
direct finger input instead of a stylus and keyboard. Then smartphone based on Android
and Windows OS came into the market with many other features like capacitive-touch

screen, virtual keyboard, etc.

On the other hand, smartwatch development kicked off in the early 2000s. IBM

"https://en.wikipedia.org/wiki/Motorola_ DynaTAC
https://en.wikipedia.org/wiki/IBM_ Simon
3https://en.wikipedia.org/wiki/TPhone

Figure 1.1: (a) Motorola DynaTac 8000x Cellular Phone, 1984 (b) IBM Simon Touch-
Screen Phone, 1992 (c) The IBM WatchPad, 2000



WatchPad! ((see Fig.1.1(c))), the first smartwatch, was released by IBM in 2000. This
watch included 8MB of memory, 320 x 240 QVGA display, Linux 2.4, an accelerometer,
vibration motor, a fingerprint sensor and Bluetooth. In 2010, a decade after IBM’s proof-
of-concept, Sony SmartWatch was the first commercially available modern smartwatch.
Presently, Smartwatches have exploded in popularity with Samsung Gear S2, Moto 360,
Pebble Watch, LG G-Watch, Apple Watch and so on [33] [34].

If we look at the evolution of smartphones and smartwatches, one thing is very
common - the computing power of these devices increases steadily over the years and
it reminds us Moore’s law [35] - "Over the history of computing hardware, the num-
ber of transistors in a dense integrated circuit doubles approximately every two years."
Improvements in CPU speed, memory capacity, screen resolution and sensory capabil-
ities of the devices have profoundly affected the development of mobile and wearable
user interfaces. These interfaces have shifted from the mainly button- and menu-based
interaction styles to Natural User Interfaces (NUIs) which involve rich sensory input
and output. For instance, user interfaces for smartphones have transformed from being
mostly button-driven, as was the case just a few years ago, toward being mainly multi-
touch based today. Likewise, in the case of smartwatches, the user interface is gradually
moving toward rotating bezel based interaction? from the direct touch input. Moreover,
the extension of the sensory capabilities of mobile and wearable devices, such as incorpo-
rating accelerometers, gyroscopes, magnetometers, light and distance sensors, not only
aid in creating the opportunities to implement a much wider variety of applications but
also enables the development of smarter and more effective interactions.

The broad objective of this thesis is to develop a number of novel interaction tech-
niques and user interface concepts for smartphones and smartwatches. We observe that
the development of mobile and wearable user interfaces is closely coupled with the evo-

lution of their sensory capabilities. In this dissertation, we have tried to make better

Yhttps://www.cs.cmu.edu/ 15-821/CDROM/PAPERS /narayanaswami2002a.pdf
2Samsung Gear S2 with rotating bezel control. http://www.samsung.com/global/galaxy/gear-s2/
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use of the available sensing capabilities of these devices for improving user interactions.
Moreover, we also provide suggestions on the types of sensor technologies that could be
added to the future devices in order to enrich their input expressiveness.

The rest of this chapter is organized as follows. Section 1.1 describes the challenges
for designing efficient mobile and wearable interactions. The scope and objective of our
work are presented in Section 1.2. Section 1.3 discusses the contribution of the thesis

and finally, Section 1.4 outlines the organization of the thesis.

1.1 Challenges for Designing Efficient Mobile and Wear-

able Interactions

The emerging market of smartphones and smartwatches provides a tremendous oppor-
tunity to introduce efficient mobile and wearable interactions to the marketplace. While
developing a novel interaction technique, we should consider the different challenges
which come from device perspective as well as from a user point of view. Several con-

straints related to an effective interaction design are as follows:

e Location for storing a mobile phone: Smartphones are often stored in pant’s
pocket, inside a bag, etc. [36] [37] and we have to remove them every time in order
to access basic functionality like calling, messaging, changing music, etc. It requires
a high level of cognitive and visual attention. Moreover, physically retrieving the

device is socially disruptive and it also incurs a non-trivial time cost.

e Small touch screen display: The latest smartphones have large enough touch
screen display which ranges from 4.8 inches to 5.5 inches. But, in the case of
smartwatches display size is on an average 1.5 inch [11] [12] [13]. The diminutive
screens of these devices mar the user experiences and suffer from visual occlusion

and the fat finger problem.
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e Phone holding pattern: In general, people use their both hands - one hand to
hold the phone and another hand to touch the screen, for effective interaction [38]

[39]. But, interactions become difficult in the one-handed situation.

e Tactile feedback: In touch interactions, users can feel tactile sensation through a
little vibration while they touch the phone’s display. But, in some situations, users
perform touchless interactions. For example, during cooking, they can’t touch
phones with their messy hands. Providing tactile feedback while users gesture
in mid-air will help them to overcome uncertainty about gesture performance.
It is really a challenge to design a tactile feedback mechanism for above-device

interaction with mobile phones [40] [41].

e Power consumption: Energy consumption is a major concern for mobile and
wearable devices [42] [43]. Developing an energy efficient interaction technique at

hardware and software levels is also a big challenge.

e User’s Context: The smartphones and smartwatches are more intimate to users
because they often carry or even wear these devices throughout their daily routine.
Hence, user’s context (i.e. location, ambient light condition, sitting/walking /running,
surrounding noise level, etc.) is an important factor for efficient interaction de-

sign [44] [45].

1.2 Scope and Objectives

In this dissertation, we have aimed to expand interactions with smartphones as well
as smartwatches keeping the challenges as mentioned above in mind. First, we have
explored mobile interactions in two directions: phone’s context-aware mobile interaction
and around device interaction for efficient text input. Then we have investigated how text

input interface of a smartwatch can be further improved for efficient typing. Finally, we
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have attempted to extend the smartwatch interaction space beyond touchscreen input.

The scopes of this work are as follows.

e Phone’s context-aware mobile interaction: Smartphone became ubiquitous
in nature and interaction with these devices greatly depends on current context.
Presently, mobile devices know little about the context in which they operate.
Hence, a user takes responsibility for managing phone’s behavior to fit with the
current environment. Performing these settings manually is an extra burden to
users. To make the mobile interaction more effective, researchers are focusing on
the development of context-aware mobile applications. There are two perspectives
in context-aware applications: user’s context and phone’s context. In this disser-
tation, we are particularly interested in automatic detection of phone’s context
and how it can be deployed to enhance user interaction with mobile devices. For
example, if the phone is on the table, then vibration may cause damage in the
phone. In this case, only ringing at the time of an incoming call is enough to
draw user attention. Most of the research in this area focus on the development of
several software and hardware solutions to detect phone’s context (i.e. phone is on
the table, inside the backpack, etc.). Further, this area of research can be explored
in the following directions: (1) designing an energy efficient phone’s placement
detection algorithm; (2) need user study to understand how this context-aware

technique helps users to perform the better mobile interaction.

e Around Device Interaction (ADI) for text entry on smartphones: An
important part of mobile interaction involves entering text. The traditional way
of entering text on the smartphone is Qwerty soft keyboard that demands a long
visual search time and suffers from fat finger problem. It is also hard to hit the
keys while users in mobile scenarios and at the same time, letters are difficult to
read, especially when eyesight-impaired [46]. In this dissertation, we are trying

to develop magnetic field based around device interaction (ADI) technique for
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text input on the smartphone. We want to explore it in the following directions:
(1) explore ADI techniques to recognize English alphabets and punctuations; (2)
design algorithm to detect start and end of character gesture automatically; (3)

development of 3D haptic feedback solution.

e Text input interfaces on smartwatches: We are gradually moving toward
wearable computing. Recently, smartwatches have gained a lot of public attention
as one of the most popular wearable devices. It allows users to interact with several
applications (messaging, email, calendar, maps) running on smartphones directly
from their wrists, without having to look at their phones. Here, text input is also
an essential part of smartwatch interaction and the scope of work in this area are
as follows: (1) designing a full-fledged soft keyboard with well balance between
error rate and typing speed; (2) moving towards touchless (i.e. 3D) text entry
may be great help to the users as it does not need an accurate and conscious finger

pointing on a keyboard.

e Smartwatch interaction mechanisms beyond touchscreen input: How-
ever, smartwatches are a promising new interactive platform, but their small size
makes even basic actions cumbersome. In this scenario, we are trying to extend
smartwatch interaction space beyond touchscreen input using minimum hardware

instrumentation.

1.3 Contribution of the Thesis

This dissertation contributes a range of sensor-based novel interaction techniques de-
signed for current and future mobile and wearable devices. Our aim is to enhance the
input expressiveness of these devices. We have shown that the expressiveness of smart-
phone’s and smartwatches input can be significantly increased using the devices inbuilt

sensors or with the help of some external sensors. We have made contributions in three
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promising areas: context-awareness, text input interfaces, and input beyond touch. The

main contributions of this thesis are discussed as follows.

e In the case of phone’s context-aware mobile interaction, we present SurfaceSense,
a scalable phone’s context sensing framework, to recognize 13 different phone’s
placements using phone’s embedded accelerometer, gyroscope, magnetometer, mi-
crophone and proximity sensor. Our proposed technique primarily works in two
steps. The first step identifies that there is a change in phone’s placement. For
example, a user is taking the phone placed on the table and putting it in his pant’s
pocket. Therefore, phone position has changed from on the table to inside the

pant’s pocket. The second step detects phone’s current context.

To understand the change in phone’s placement, we proposed a simple threshold
based algorithm on tri-axial accelerometer signal, and it is running continuously

as a background service.

When a change in phone’s placement is detected, SurfaceSense triggers the phone’s
placement sensing mechanism. To sense phone’s present surface, it vibrates for
four seconds and during the vibration, accelerometer, and gyroscope record motion
data, magnetometer records magnetic field strength, proximity sensor measures the
presence of nearby objects at different distance levels, and microphone captures
phone’s vibration echoes. Once sensor data collection is completed, data are pro-
cessed to identify those surfaces. The surface recognition procedure is basically a
two-tier hierarchical classification approach. In the first and second level, a simple
‘if-else’ rule-based reasoning module is used on the basis of proximity and magne-
tometer sensor data pattern to categorized surfaces into four subgroups, that is,
metal and non-metal inner surfaces, metal and non-metal outer surfaces. Then,
extracted features from accelerometer and gyroscope sensor data and recorded vi-
bration echoes are fed into four Random Forest (RF) classifiers to infer surfaces

from each group. Note that, there is one RF classifier for each subgroup.



1.3. Contribution of the Thesis

Finally, we develop several example applications to show that how the proposed

framework can be used to enhance mobile interactions.

e Next, we propose MagiText, around device interaction based text input mecha-
nism, which provides the text entry space beyond physical boundaries of a device.
The key idea is to influence the magnetometer sensor by writing character ges-
tures in front of the device using a properly shaped magnet taken in hand. Here,
we consider two types of character gestures - Graffiti' and EdgeWrite [47]. The
movement of this magnet changes the magnetic flux pattern, and it is sensed and
registered by the magnetometer sensor. Then, we classify this flux pattern using

support vector machine classifier and identify intended character.

e To enable a better text entry mechanism with smartwatches, we propose two text

entry approaches: ETAO keyboard and 3D typing using hall effect sensors.

The ETAO keyboard enables faster and less erroneous text input on ultra-small
interfaces of smartwatches. Using our proposed keyboard’s user-interface (UI), a
user can type most frequent characters (i.e. E, T, A, O, I, N, S, and R) with a
single tap and remaining characters, numbers, and symbols with two taps. Here,
we use ‘tap’ as the prime input method because it is really easy to perform while
walking in a street. Moreover, this layout easily eliminates ‘fat-finger problem’
by providing keys with bigger buttons and provides well trade-off between typing

speed and error rate.

With 3D typing, users can write text just by drawing character gesture above the
watch face. It is basically a touchless text input approach for smartwatches. To
achieve this, we place four Hall sensors? in four corners of a watch and map each
EdgeWrite letter [47] to four corners. To enter any alphanumeric character, users

move their magnet mounted finger over hall effect sensors following the predefined

"http://en.wikipedia.org/wiki/Graffiti_(Palm__OS)
https://en.wikipedia.org/wiki/Hall_effect_sensor
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corner sequences. This text input technique has several advantages such as (a) it
does not require any touch screen space, (b) it is free from occlusion problem, and

(c) it does not demand any visual search also.

e To extend smartwatch’s input space beyond its tiny touchscreen, we present PressTact
which augments smartwatches with four Force Sensing Resistors (FSRs) - two sen-
sors on the left side of a watch and another two on the right side. It enables
users to input different levels of pressure (light press, medium press, and strong
press) in discrete and continuous mode. In this work, we define a rich vocabulary
of pressure events that can be mapped to many different actions in a variety of
applications. For example, it can be used for bi-directional navigation (panning,
zooming, scrolling, rotation, etc.) on smartwatches. Our preliminary user study
shows that participants can input different pressure levels with an acceptable ac-

curacy, and it is a promising input modality for future smartwatches.

1.4 Organization of the Thesis

The thesis contains seven chapters including this introductory chapter. This chapter
gives a brief introduction to mobile and wearable interactions and discusses different
challenges associated with it. Then, scope and objectives of the work are presented in
this chapter. Next, we discuss the contribution of the thesis. It also introduces subjects
which are described in details in the next chapters.

Chapter 2: Related Work

This chapter provides compendious reviews of existing works related to phone’s context-
aware mobile interaction, around device interaction for text entry on the smartphone,
text input interfaces on smartwatches, and smartwatch interaction mechanisms beyond
touchscreen input.

Chapter 3: Phone’s Context Sensing Based Mobile Interaction

10



1.4. Organization of the Thesis

This chapter describes our approach to detect phone’s context. It also highlights different
mobile interactions developed on the basis of phone’s context.

Chapter 4: Magnetic Field Based ADI for Text Entry in Smartphone
This chapter explains the details of around device magnetic interaction for 3D space text
entry in the smartphone.

Chapter 5: Efficient Text Input on Smartwatches

This chapter describes the design and user study of our proposed smartwatch’s text
input mechanisms - ETAO keyboard and 3D typing hall effect sensors.

Chapter 6: Side Pressure-Based Input for Smartwatch Interaction

This chapter provides the details implementation and user study of the side pressure
sensors based smartwatch interaction technique.

Chapter 7: Conclusion and Future Research

Finally, this chapter summarizes the thesis contributions and provides potential future

research directions for further exploration.
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Chapter 2

Related Work

In this chapter, we survey the existing work related to the interaction techniques planned
in our thesis. We report our survey in four subsections. Section 2.1 represents related
work on phone’s context-aware mobile interaction. Section 2.2 discusses existing work
on around device interaction for text entry technique. Section 2.3 highlights related
work on smartwatch text input interfaces. Next, Section 2.4 presents existing work on
smartwatch interaction mechanisms beyond touchscreen input. Finally, we summarize

the all related work sections.

2.1 Phone’s context-aware mobile interaction

Phone’s context (e.g., whether phone is on the table, inside backpack etc.) sensing is
an active research field. So far, various approaches have been proposed using phone’s
embedded sensors and sometimes, with the help of external hardware. Harrison et
al. [48] identified proximity materials of mobile devices using the multi-spectral optical
sensor. In their approach, different LEDs (i.e. infrared, red, green, blue and ultravio-
let) were used to artificially illuminate the target material and photo-register measured
the reflected light properties (i.e. wavelength). The experimental result showed 86.9%

placement-detection accuracy for 27 different test placements. This approach consumes
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2. Related Work

less power (~20 mA) and faster enough (took 5 sec). In [36], the authors built ‘Phonepri-
oception’ model with 85% accuracy using experience sampling method (ESM) to infer
phone placements. They also demonstrated that reasonably accurate classification is
possible using proximity sensor, light sensor, and multi-spectral sensor. Wahl et al. [49]
presented RFID tag based phone placement inferring method. In their experiment, they
placed RFID tags at pant, table, jacket and bag. Smartphone’s built-in NFC reader
automatically scans RFID tags when phone passes these sites and recognizes the places

with an average accuracy of 80%.

The methods described in [48] [36] and [49], demand some external hardware setup.
But, it would be much better and robust if cell-phone’s inbuilt sensors (such as an ac-
celerometer, gyroscope, microphone, proximity sensors, magnetometer etc.) can be used
to infer phone surface. Keeping this in mind, Cho et al. [50] proposed ‘VibePhone’
where extracted Jigsaw and time histogram features from vibration generated accelera-
tion readings are used as input to the SVM classifier that recognized six contract surfaces
(i.e. sofas, plastic tables, wooden tables, hands, backpacks, and pants pockets) with 85%
accuracy. In [51], Hwang et al. proposed ‘VibroTactor’, an easy and inexpensive solu-
tion, by analyzing smartphone’s microphone captured acoustic signal generated when
the mobile device vibrates. They derived several characteristics (such as peak count,
peak intensity, peak frequency, and skewness) from spectrograms of vibration echoes on
different placements. These features are fed to the RBF classifier that achieves the recog-
nition rate of 91% in 12 different real-world placement sets. Kunze et al. [37] proposed
a symbolic phone location method based on an active sampling of vibration generated
motion data captured by the accelerometer and ‘beep’ sound signatures. They achieved
recognition rates of up to 81% for 35 trained locations and 86% for 12 abstract locations.
In [52], Yang et al. demonstrated a low-cost solution using smartphone embedded prox-
imity (IR) and light sensor to detect ‘in the pocket’, ‘in the bag’, ‘out of pocket’ and ‘out

of the bag’. The average accuracy of their demo prototype is above 98% and it consumes

14
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less than ~6mW power for collecting sensor readings. Recently, Diaconita et al. [53] pre-
sented an acoustic probing based approach to detect ‘in a backpack’, ‘on the desk’, ‘in
user’s hand’ and ‘in a user’s pocket’. In their approach, mobile phone emits and records
short bursts of inaudible audio signals while it is placed at above mentioned positions.
The differences in signal attenuation reveal the nature of the material surrounding the
mobile phones. They performed this experiment in various environments such as office,
bus, train, outdoors etc. For identification purpose, they extracted MFCC, DMFCC and
Band Energy (BE) features from the recorded audio signal. Finally, they achieved 97%

and 96% accuracy using K-Nearest Neighbors and Random Forest, respectively.

2.2 Around Device Interaction for text entry with smart-

phones

3D space text entry technique expands the text input space beyond the physical bound-
aries of the device. For this purpose, researchers have used phone’s inertial sensors such
as the accelerometer, gyroscope, and magnetometer. For instance, in [1], Agrawal et al.
proposed ‘PhonePoint-Pen’ where a user holds the phone like a pen and writes short mes-
sages in the air ((see Fig.2.1(a))). The acceleration due to hand gestures are translated
into geometric strokes and compares the sequence of strokes against a grammar tree to
identify the air written English alphabets. This process needs no training and recognizes
characters with 83% accuracy. Deselaers et al. [2] presented ‘GyroPen’ that also allows
users to hold the smartphone like a pen and write on any surface ((see Fig.2.1(b))). The
angular trajectory of the phone’s corner is reconstructed from the phone’s embedded
gyroscope sensor and it is used as input to the online handwriting recognition system
to identify the desired English words. In the experiment, novice participants took 37
seconds to write a word, whereas experienced users were able to write it within 3-4 sec-

onds with a character error rate of 18%. However, both types of users feel that holding
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Figure 2.1: (a) PhonePoint-Pen prototype [1] (b) GyroPen prototype [2].
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Figure 2.2: (a) SideSight prototype [3] (b) The working principle behind SideSight.

the phone as a pen is a little bit awkward for writing long words. In [54], authors pro-
posed a stepwise lower-bounded dynamic time warping (DTW) algorithm to recognize
user-independent real-time 3D handwritten English alphabets using phone’s built-in gy-
roscope sensor. This approach achieves 91.1% accuracy and it is computationally faster
in terms of memory and CPU time.

The 3D space handwritten recognition methods presented in [1], [2] and [54] consid-
ered phone as a pen. But, in our work, we used a different framework called around
device interaction that utilizes the physical space around the mobile device to provide
richer input possibilities. This ADI commonly deals with different types of sensory in-
puts such as infrared distance sensor, camera, depth sensor, electric field, and magnetic
field. For example, Butler et al. [3] proposed ‘SideSight’ ((see Fig.2.2(a)) & (b))) which

uses infra-red (IR) proximity sensors to implement single and multi-touch gestures to
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(b)

Figure 2.3: (a) HoverFlow prototype [4] (b) User performs ‘sweep-right hand palm’ gesture
above the mobile device.

Figure 2.4: Recognizing different in-air hand gestures using Phone’s RGB camera [5].

the sides of a mobile device when the device is rested on a flat surface. Similarly, ‘Hov-
erFlow’ [4] also recognizes coarse hand gesture above a mobile device using a set of IR
distance sensors (see Fig.2.3(a) & (b)).

In [5], Song et al. developed a novel machine learning algorithm to extend the

interaction space around mobile devices by detecting rich gestures performed behind
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Figure 2.6: PalmSpace prototype detects different palm poses using depth camera [7].

or in front of the screen (see Fig.2.4). Their algorithm takes input from phone’s RGB
camera in real-time and recognizes different hand gestures robustly (93% accuracy) in
varying lighting conditions. Niikura et al. [6] proposed 3D typing interface by tracking

fingertip using a high frame rate camera (see Fig.2.5).

In [7], Kratz et al. presented ‘PalmSpace’ which detects several single handed palm
gestures using depth cameras on mobile devices (see Fig.2.6) and manipulates the orien-
tation of a virtual object on mobile device screen just by mapping those gestures onto it.

Goc et al. [8] developed electric field sensing based 3D interaction techniques on mobile

18
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Figure 2.7: Electric field sensing based in-

Figure 2.8: MagiWrite prototype [9].
teractions with mobile devices [8]. & & P ype [9

devices (see Fig.2.7).

There are some touchless interaction techniques (such as ‘MagiTact’ [55], ‘Mag-
Pen’ [56], ‘MagNail’ [57], ‘MagGetz’ [58], ‘Magnetic Appcessories’ [59], ‘MagCubes’ [60],
‘Magnetic Marionette’ [61]) using phone’s embedded magnetometer sensor. Among all
these sensory inputs, magnetic field based ADI is much simpler as (1) its hardware (i.e.
magnetometer sensor) is already available in the current mobile devices; (2) it consumes
very less power; (3) it does not suffer from illumination variation and occlusion problems
like camera based ADI; (4) it can pass through many materials i.e. it enables in-pocket
interaction. Considering all these benefits, Ketabdar et al. [9] introduced ‘MagiWrite’,
which supports 3D space digit (i.e. 0 - 9) entry in smartphones using magnetic field

based around device interaction technique (see Fig.2.8).

2.3 Text input interfaces on smartwatches

In recent time, text entry on smartwatches is a prospering research area. Tiny touch
screen of smartwatch suffers from visual occlusion and the fat finger problem. The fingers
obscure on-screen contents and user interface elements during interaction, and as a result
it hinders efficient text input on watches. To address these challenges, researchers have
investigated various text input methods in last few years.

In [10], Oney et al. proposed ‘ZoomBoard’ (see Fig.2.9) that uses a miniaturized
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Figure 2.9: (a) Default ZoomBoard layout [10]. (b & c¢) User taps for iterative zooming.
(d) The keyboard resets after entering the desired character.
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Figure 2.10: Swipeboard [11]: (a) User selects one region out of nine with the first swipe.
(b) Using second swipe, user enters specific character. In the figure, swiping right types ‘D"

version of the conventional Qwerty keyboard. The user has to focus on a particular
area of keyboard and then tap for zooming into that area. The user can also zoom in
further depending upon the number of zoom levels set. Once the zooming is done the
user selects the appropriate key by tapping. Although this mechanism seems favorable
to the user because of the familiar layout, it still requires two or more careful taps to

zoom and select a key. Text entry rates suffer because of these excessive tapping tasks.

The ‘Swipeboard’ [11] divides the traditional Qwerty keyboard into nine regions and
to enter any character, user requires two swipes. Figure 2.10 represents the ‘Swipeboard’
prototype. Using first swipe, user specifies the desired character’s region and the second

swipe selects the particular character within that region.

In [12], Cho et al. developed ‘DragKey’ prototype (see Fig.2.11(a) & (b)) for text
entry in wrist-worn watches with tiny touchscreen. It is a circular keyboard composed

of 8 ambiguous keys arranged around the text cursor. At most five letters are assigned
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Figure 2.11: (a) DragKeys layout [12]. (b) The interaction sequence to enter ‘q’ with
DragKeys.
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Figure 2.12: The alphabetic ambiguous-keyboard running Sony Smartwatch 2: (a) con-
cept, (b) design, and (c) implementation [13].

to each key. It allows a user to input letters using drag directions regardless of careful
touched locations. A user needs lot of time to learn this layout. Furthermore, making
continuous drag gestures is quite difficult in walking situations and it is also slower than
tapping.

Dunlop et al. [13] proposed alphabetic ambiguous-keyboard for text entry and it is
shown in Fig.2.12. They divided the watch screen into seven zones, that is, six big
ambiguous keys (three at the top of the screen and three at the bottom) and a center
zone for the input entry field. OpenAdaptxt [62] is used for entry disambiguation and
input methods like tapping and few swipe gestures are used to change modes (alpha-
betical /numerical, lower/upper case, punctuation), complete a word or enter a space.

Overall, it is good, but a user may face difficulties while trying to enter password and urls.
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Figure 2.13: (a) The operational concept of the SplitBoard layout [14]. (b, ¢, & d) The
three parts of the SplitBoard. When a user flicks from right to left on the part (b), the
screen switches to (c).
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Figure 2.15: The conceptual drawing of
the Virtual Sliding Qwerty (VSQ) [16].

Figure 2.14: UniWatch Keyboard: Typ-
ing using three strokes (‘/7, ‘(’, ‘") [15].

1

Moreover, commercially available prediction based text input techniques like Minuum*",

TouchOne?, Swipe?, and Fleksy* also suffer from similar kind of problems.
Hong et al. [14] developed ‘SplitBoard’ (see Fig.2.13) which is a variation of the
Qwerty keyboard. Here, Qwerty layout is split into a few layers. The user sees one layer

of keys and has to swipe left or right to press keys present in other layers. It is intuitive

"http://minuum.com/
http://www.touchone.net /
Shttp://www.swype.com
“http://fleksy.com
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Figure 2.16: Using a touch-sensitive wristband for text entry on smartwatches [17]. The
multi-tap layout is shown on the left and the linear keyboard is shown on the right.

to use as it doesn’t require a steep learning curve. But, the key-size of SplitBoard is not
large enough to avoid fat-finger problem.

Poirier et al. [15] designed ‘UniWatch’ (see Fig.2.14) derived from the UniGlyph [63]
method and it supports text input on smartwatches using only three keys i.e. diagonal-
shape key (‘/’), loop-shape key (‘(’) and straight-shape key (‘|").

In [16], J. M. Ckha proposed ‘Virtual Sliding Qwerty’ (VSQ) keyboard (see Fig.2.15)
which utilizes a virtual qwerty layout and a ‘Tap-N-Drag’ method to move the qwerty
keyboard until the target letter is shown on the screen.

The keyboards, discussed so far, require significant amount of space in the watch
display. More recently, Funk et al. [17] explored a new text entry method for smart-
watches using a touch sensitive wristband (see Fig.2.16). This technique does not need

any screen space and thus watch’s screen can be used for presenting actual content.

2.4 Smartwatch interactions extending touchscreen input

Touchscreen interaction has become a fundamental means of controlling smartwatches.
However, the small form factor of a smartwatch limits the available interactive surface
area. In recent past, researchers have proposed several approaches to address these

challenges.

23



2. Related Work

Figure 2.18: Smartwatch with hall-effect joystick sensor supports continuous 2D panning,
twist, tilt and click gestures [19].

Baudisch P. and Chu G. [64] presented touch enabled backside of the device for oc-
clusion free interaction. However, rear surface of a wristwatch is inaccessible to users.
TouchSense prototype [65] expanded watch’s touchscreen input bandwidth by augment-
ing different areas of human finger with an IMU sensor. Oakley et al. [66] developed
beating gestures composed of a rapid pair of simultaneous or overlapping screen taps
made by the index and middle finger of one hand. In [18] Xia et al. presented a finger-
mounted fine-tip stylus, called ‘NanoStylus’, that supports high precision pointing on a
smartwatch with almost no occlusion (see Fig.2.17).

Utilizing watch’s bezel and strap instead of its touchscreen face is a popular technique
for efficient interaction. Oakley et al. [67] placed an array of touch sensors on the bevel of
a watch to provide high resolution capacitive input. Similarly, the haptic wristwatch [68],
made up of a rotatable bezel and touchscreen with haptic feedback, allows for detection
of simple, eye-free gestures such as covering the watch, turning the bezel, or swipe over
the watch. Xiao et al. [19] moved away from a static bezel and introduced a proof-

of-concept to provide mechanical input (such as pan, twist, tilt and click) by moving
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&
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Figure 2.19: The ‘Watchlt’ prototype extends smartwatch interaction space using its
wristband [20].

—~— |
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[

Figure 2.21: The ‘Skin Buttons’ en-
ables smartwatch interaction using touch-
sensitive projected icons [22].

Figure 2.20: Around device interac-
tion with smartwatches using magnetome-
ter sensor [21].

the movable display on a smartwatch (see Fig.2.18). In [20], Perrault et al. presented
‘Watchlt’ (see Fig.2.19) that uses wristband surface as an input area for occlusion-free
selection and scrolling task. Likewise, ‘BandSense’ [69] allows pressure sensitive multi-
touch interaction on a wristband.

In-air gestures based interaction mechanism utilizes the space around the watch for
input with minimal screen occlusion. For example, ‘Gesture Watch’ [70] and ‘HoverFlow’
[4] augments a watch face with an array of proximity sensors to detect swipe gestures
above and around the watch. Abracadabra [21] supports around the watch interaction
using magnetometer sensor (see Fig.2.20). In [71], ‘Transture’ overcomes the spatial
constraints of touch gestures on small watch screen by allowing them to continue into
the hover state. Knibbe et al. [72] extended the interactive surface of a smartwatch
by allowing users to perform single finger, multi finger and whole arm gestures to the

back of the hand. They used a combination of infra-red sensors, ultrasound sensors

25



2. Related Work

Circuit board (fore sida)

Distance sansor
{for detecting rotation)

Figure 2.22: The ‘SkinWatch’ prototype using photo-reflective sensors [23].

and a piezoelectric sensor to recognize six different distinct gestures. In ‘Skin Buttons’
prototype [22], a user can select the icons projected on the skin by pushing his or her
finger on those icons (see Fig.2.21). Basically, it is a projected interface that enables

button inputs using laser light and photo sensing techniques.

Other previous works utilized skin, hand, blow, eye-gaze etc. to expand the inter-
action space of a smartwatch. For instance, ‘SkinWatch’ [23], an embodied interaction
modality, supports gesture input (like pinch, rotation and scroll) by sensing deformation

of the skin under wristwatch via photo-reflective sensors (see Fig.2.22).

Interaction with smartwatch demands both hands - dominant and non-dominant.
Users face difficulties to interact with watches while carrying something. To address this
issue, AkKkil et al. [73] presented gaze-gesture based interaction on smartwatches for menu
navigation, selecting an item and notification task. ‘Blowatch’ [24] technique provides
blowing as an input for one handed smartwatch interaction (see Fig.2.23). Kerber et
al. [25] proposed one-handed, eyes-free smartwatch interactions using electromyography
(EMG) armband (see Fig.2.24) and compared its task completion time with respect to

touch interactions.
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[

Opposite-side hand Same-side hand

Figure 2.24: Control smartwatch using

Figure 2.23: The ‘Blowatch’ supports Myo armband [25].

blowing gestures based smartwatch interac-
tions [24].

2.5 Summary

In this chapter, we have discussed various approaches related to the context-aware mobile

interaction, text entry interfaces, and interaction mechanisms beyond touchscreen input.

In context-aware mobile interaction, earlier work focused on the detection of phone’s
current position using device’s inbuilt sensors or with the help of external hardware.
There is no doubt that phone’s onboard sensors based placement detection approaches
[50] [51] [37] [52] [53] are more appealing than the use of external hardware [48] [36] [49].
Therefore, we are interested in recognizing different surfaces using phone’s available
sensors. In previous work [50]- [53], proposed approaches are not energy efficient, as these
techniques run continuously on the background to sense phone’s placement. Moreover,
their mechanisms can efficiently detect a limited number of placements. Hence, designing
an energy efficient framework which will be able to identify several phone’s placement

with an acceptable accuracy, is a challenging task.

Around device interaction for mobile devices commonly deals with different types
of sensory inputs such as infrared distance sensor [3] [4], RGB camera [5] [6], depth

camera [7], electric field sensing [8] and magnetometer [55] [56]. Most of these work
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mainly focus on how users can input different gestural command in 3D space to support
the natural interaction with mobile devices. However, these techniques demand exter-
nal hardware as the proposed sensory inputs are not available in the latest generation
smartphones. In [55], [56], [57]- [61] researchers deployed phone’s inbuilt magnetometer
sensor to enhance its interaction space above and around the device. But, they didn’t
explore the perspective of text entry mechanism. In this thesis, we are mainly trying
to use magnetic field based around device interaction technique for text input on the

smartphone. It provides the text entry space beyond physical boundaries of a device.

Similarly, designing an efficient text input interface for smartwatches is an important
part of the wearable interaction. Most of the earlier research work [10]- [17] related to
text entry mechanism on smartwatches tried to fit traditional Qwerty soft keyboard in an
intelligent way. The proposed virtual keyboards, which provide good typing accuracy, are
slow in nature (i.e. demand high keystrokes per character), and keyboards which support
faster typing, are error-prone. However, there are few techniques where researchers
used predefined stroke gestures and touch sensitive wristband for typing. In fact, these
approaches don’t address all challenges regarding smartwatch text input. There is still
room for improvements. We can design a text entry interface which will provide a good
trade-off between typing speed and error rate. Further, we can also think about touchless

(i.e. 3D space) text entry mechanism for smartwatches.

There is another perspective of smartwatch interaction, that is, how can we input
different commands or gestures to perform certain actions like zooming, panning, rota-
tion, scrolling, etc. In commercially available smartwatches, we use its tiny touchscreen
for interaction. The small screen of the watch suffers from visual occlusion and the fat
finger problem. To address these issues, researchers have developed several techniques
such as touch-enabled backside of the device interaction [64], NanoStylus [18], watch’s
bezel [67] [19] and strap [20] [69], projection based interface [22], interaction based on

sensing skin deformation [23], eye-gaze [73], and EMG [25]. Most of them require too
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much hardware instrumentation, and it is quite difficult to deploy these hardware set-ups
into watch form-factor immediately. Hence, we can think about a solution which will be

cost-effective and must have the immediate feasibility to fit into smartwatches.
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Chapter 3

Phone’s Context Sensing Based

Mobile Interactions

In recent times, researchers have proposed numerous approaches that allow smartphones
to determine user current locations (e.g., home, office, railway station, restaurant, street,
supermarket etc.) and their activities (such as sitting, walking, running, bicycling,
driving, cutting bread, making coffee, watching television, working at laptop, taking
lunch, using water tap, brushing teeth etc.) in real-time. But, to infer much richer
story of context-aware applications, it is necessary to recognize the smartphone surfaces
- for example on the sofa, inside the backpack, on the plastic chair, in a drawer or
your pant pocket. This chapter presents SurfaceSense, a two-tier, simple, inexpensive
placement-aware technique, that uses smartphone’s embedded accelerometer, gyroscope,
magnetometer, microphone, and proximity sensor to infer where the phone is placed. It
does not require any external hardware and able to recognize thirteen different surfaces

with an acceptable accuracy.

The rest of the chapter is organized as follows. Section 3.1 describes the motivation
of our work. In Section 3.2, a brief phone placement study has been presented. The

Section 3.3 describes SurfaceSense system architecture and Section 3.4 focuses on the
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3. Phone’s Context Sensing Based Mobile Interactions

experimental results. The Section 3.5 details the implementation of SurfaceSense as an
Android App. In Section 3.6, we show several example applications to enhance mobile

interactions using our proposed framework. Finally, Section 3.7 concludes this chapter.

3.1 DMotivation

Now-a-days, smartphone became ubiquitous in nature - everyone carries their phone
with them almost all time and in all places. Presently, mobile devices know little about
the context in which they operate and so, the user takes responsibility for managing their
behavior to fit with the current environment. Performing these settings manually is an
extra burden to users. For example, if the user enters into a classroom, she has to set her
cell-phone into silent mode manually. To provide intelligent supports to users, researchers
are focusing on the development of context-awareness into mobile devices such that it
should automatically adapt to user’s changing environment or context [74] [75]. There
are two perspectives in context-aware applications, that is, user’s context and phone’s
context. The user’s context mainly focus on detection of user’s current location (e.g.,
home, office, railway station, restaurant, street, supermarket etc.) [26] [27] and their
real-time activities (such as sitting, walking, running, bicycling, driving, cutting bread,
making coffee, watching television, working at laptop, taking lunch, using water tap,
brushing teeth etc.) [28] [29] [30] using smartphone.

So far, it’s all about user’s context detection. But, to make context-aware applica-
tions complete, it is also important to identify phone’s context, that is, on the sofa, inside
the backpack, on the plastic chair, in a drawer or your pant pocket. Automatic detection
of smartphone’s context has several advantages. For example, (a) if the phone is in the
pocket, then it automatically turns off the display and locks it to prevent pocket-dialing;
(b) if cell-phone is in the backpack, then the phone should ring at the highest volume
at the time of an incoming call. The similar setting is desirable if it is on the bed or

sofa; (c¢) in pant-pocket location, vibration is sufficient to draw user’s attention; (d) if
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the phone is on the hard surface like a wooden table or metal cabinet, then vibration
may cause damage in the phone. In this case, only ringing is enough; (e) if the phone
is put in a drawer, it is reasonable to assume that in near future, the phone will not be
used. So, it can go to the power saving mode; (f) if the phone is in a pocket, then don’t
activate pollution sensor!; (g) it also helps to detect user’s context. For instance, when a
phone is on a table, the microphone may be given the highest priority to estimate user’s
surrounding environment from ambient sound.

There are two objectives in our work. The first objective is to understand where
people generally keep their phones across various contexts such as at home, office-place,
driving, sleeping, etc. For this purpose, we carried out a user study and identified 13
different phone placements like a wooden table, sofa-bed, glass table, backpack, plastic
chair, cart-box, fabric chair, phone holder, metal chair, wooden-drawer, metal drawer,
pant’s pocket, and user’s hand. In our second objective, we mainly focus on how to
identify these locations automatically using phone’s inbuilt sensors.

In particular, key contributions of this chapter are summarized as follows:

1. We present the system architecture of SurfaceSense, which follows two-tier hier-
archical classification approach, to recognize 13 different phone placements using
smartphone’s built-in sensors with 91.75% accuracy. The advantage of our pro-
posed method is that it requires a less number of surface candidates to build the

classifier module for each subgroup and reduces overall complexity.

2. We propose a simple threshold based algorithm using accelerometer signal to detect

the change in phone placement.

3. We implemented SurfaceSense as an Android application on the Samsung Galaxy

S4 and analyzed the resource consumption profile (i.e. CPU and Memory usage).

4. Finally, we develop several example applications to show that how the proposed

"http:/ /www.gizmag.com /nitrogen-dioxide-sensor /40082/

33



3. Phone’s Context Sensing Based Mobile Interactions

framework can be used to enhance mobile interactions.

3.2 Phone Placement Study

To understand where people commonly keep their phones in everyday life, we interviewed
92 participants (60 male and 32 female), all aged between 20-38 (Mean = 29). They were
primarily graduate, post-graduate students in our university’s information technology
department. They are all well experienced with smartphones. All of them were given
a compensation for their time. We asked them two questions: (a) where they normally
keep their phones in five different contexts like, in the home while awake, in the home
while sleeping, at the office, driving and walking around; (b) how they decide where to
put their phone. Table 3.1 shows where people put their phones across various activities.
We were surprised that in this study none mentioned belt-pouch as a choice for carrying
the mobile phone while they are walking or driving. However, due to the increased
size (width and height) of the latest smartphones, it is impractical to carry the phone
in belt-pouch. In fact, belt pouches are not commercially available for many latest
smartphones. From this phone placement study, we got total 13 surfaces and decision
factors for selecting these surfaces are easy to access notifications, phone’s safety, physical
comfort, minimize distraction, common habit, nearby charger socket and so on.

Table 3.1: Phone placements during different activities.

Activities Phone Placements

wooden table (62%), glass table (17%),
in hand (13%),plastic chair (3%),
fabric chair (2%), metal chair (2%),
cardboard-box(1%)

bed (78%), wooden table (9%),
Sleeping at home | glass table (6%), wooden drawer (3%),
phone holder (2%), metal drawer (1%)
wooden table (81%), pant’s pocket (12%),
in hand (7%)

Driving pant’s pocket (94%), backpack (6%)
Walking pant’s pocket (91%), backpack (9%)

Awake at home

Working at office

34



3.3. SurfaceSense Framework

3.3 SurfaceSense Framework

The SurfaceSense system architecture fundamentally comprises two parts: (1) change
in phone placement detection and (2) phone’s context sensing. The working of the said

two modules is discussed in the following sub-sections.

3.3.1 Change in Phone Placement Detection

Detection of change in phone placement means how the phone will automatically un-
derstand that user has changed its current position. For example, a user is taking the
phone placed on the table and putting it in his pant’s pocket. In this case, phone posi-
tion has changed from on the table to inside pant’s pocket. In this chapter, the proposed
change in phone placement detection algorithm will run continuously as a background
service. It is a simple threshold based algorithm relying on the captured data of the
smartphone’s tri-axial accelerometer sensor. Since this algorithm will run continuously,
phone’s battery consumption is an important concern. To optimize the power consump-
tion of the device, we use only the accelerometer signal as it is the most informative
sensor regarding the change in phone placement detection.

Figure 3.1 represents the flow-diagram of change in phone placement detection al-
gorithm. To understand that there is a change in phone placement, we continuously
analyze t sec of accelerometer signal (A4, A, and A,) window in real-time. If change in
each axis acceleration (AA;, AA, and AA;) exceeds threshold Thy, then we calculate

the norm of the current accelerometer signal as described in Equation (3.1).

AT] = /1Al + 4,2 + | A2 (3.1)

Now, check that if | Ap| is within the range of T'he and Ths, that is, Tho<|Ap|<Ths
and two consecutive |Ap| satisfy this criteria within a given time interval of § msec

(0<t), then a counter increases every time and change in phone placement is suspected.
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Figure 3.1: Flow diagram of the change in phone placement detection algorithm.

In the final step, if the counter status is Thy<counter<Ths after ¢ sec window, then
there is a real change in phone placement.

If counter < Thy, it means the phone is in the same place. On the other hand, if
counter > Ths, then there is a chance that user is doing other activities like walking,

running, going up or down the stairs.
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Figure 3.2: Flow diagram of phone’s context sensing algorithm.
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Figure 3.3: Magnetometer readings for (a) hand-holding position and (b) metal chair

position.

3.3.2 Phone’s Context Sensing

If a change in phone placement is detected, then phone’s context sensing module starts
working. This module fundamentally comprises three parts: (1) surface categorization

using proximity and magnetometer sensors (2) feature extraction from microphone, ac-
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Figure 3.4: Spectrum of vibration echoes for (a) hand holding and (b) pant’s pocket
position.
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Figure 3.5: Accelerometer readings for (a) hand holding and (b) pant’s pocket position.
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Figure 3.6: Gyroscope reading for (a) hand holding and (b) pant’s pocket position.

celerometer and gyroscope sensor data (3) Random Forest classifier to recognize phone

placement. Figure 3.2 represents the flow diagram of phone’s context sensing algorithm.
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The details of each part of this algorithm are discussed below.

3.3.2.1 Surface Categorization

This surface categorization works on two levels. In the first level, a proximity sensor is
employed and on the basis of proximity sensor data, phone placements are categorized
into two broad groups: inner (i.e. pant’s pocket, backpack, etc.) and outer (i.e. plastic
chair, wooden table, etc.) surfaces. From the experiment, it is observed that proximity
sensor of Samsung Galaxy S4 returns 0.00 c.m. as the average value of proximity distance
for inner surfaces and in the case of outer surfaces, it is 8.00 c.m. Therefore, Thg = 5
c.m. (empirically) is considered as a threshold to distinguish between inner and outer
surfaces.

In the second level, magnetometer sensor is used to categorize further each group into
two subgroups: metal and non-metal surfaces. To be specific, non-metal inner surfaces
are pant’s pocket, backpack, and wooden drawer; the metal inner surface is metal drawer;
non-metal outer surfaces are wooden table, soft-bed, glass table, plastic chair, cart-box,
fabric chair, phone holder, and user’s hand; metal outer surface is metal chair. In the
experiment, we logged magnetometer sensor data at the sampling rate of 100 Hz. For
non-metal surfaces, strength of magnetic field varies between 15 p'T to 50 4T and in case
of metal surfaces, it is approximately 65 pT to 200 uT. For example, Figure 3.3(a) &
(b) represent magnetometer readings related to the positions of hand-holding and metal
chair respectively. Here, we choose Thy = 62 uT as a threshold to distinguish metal

surfaces from non-metal one.

3.3.2.2 Feature Extraction

During vibration phase, the device itself records the vibration echoes using a microphone
at 44.1 KHz sampling frequency and motion data with the help of accelerometer and

gyroscope sensors at 100 Hz sampling frequency. These vibration sound and motion data
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vary depending on surfaces. For example, Figure 3.4(a) & (b) represent different sound
signatures for hand-holding and pant’s pocket positions respectively. Figure 3.5(a) & (b)
depict the magnitude of raw accelerometer values for two smartphone positions, hand-
holding and pant’s pocket. Likewise, Figure 3.6(a) & (b) display two plots of gyroscope
readings related to hand-holding and pant’s pocket positions. To characterize different
surfaces, we extract time and frequency domain features from recorded signals. Feature
extraction step consists of three parts: (a) vibration sound features (b) accelerometer

features and (c) gyroscope features.

Vibration Sound Features This sound fingerprint is processed in frames with a 20
msec sliding window and 50% overlap. Each window is smoothed with a Hamming filter,
and the following features are extracted. [l - 2]: zero crossing rate, short-time energy
(time domain); [3 - 6]: spectral flux, spectral rolloff, spectral centroid, and Spectral
entropy (frequency domain). For each 6D feature vector, the standard deviation is

calculated over all windows.

Accelerometer Features The 3 axis accelerometer readings are divided into frames,
and we find global vertical (the direction of gravity) and horizontal (perpendicular to
the direction of gravity) components from each frame to eliminate smartphone’s different
orientation effects in the feature set. To do this, we use a simple normalization scheme
as described in [76]. The algorithm works as follows.

Let the raw accelerometer readings in a frame be a; = [a; (i), ay (i), a.(3)], i = 1,...,n,
where a,(7), ay(i), and a(i) are the accelerometer readings along z, y and z axis re-
spectively and n is the number of accelerometer readings in a frame. Note that, a non-
overlapping rectangular window is used in the framing process and window size is 320
msec. We obtain vertical acceleration vector p corresponding to gravity as p = [m,, my,
m;], where mg, my and m, are the average values in each axis, that is, m, = % il ay (7).

P

The dynamic component of a;, caused by the user’s motion rather than gravity, is rep-
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resented as d; = [az(i) — my, ay(i) — my, a,(i) — m;]. Then using vector dot product,
vertical component v; is computed as v; = (%)p. The horizontal component, h;, is
calculated as h; = (d; — v;). Finally, we use || h; || and || v; || as horizontal and vertical
components to extract following features. [1 - 8]: mean, std, min and max of vertical
and horizontal acceleration respectively (time domain); [9 - 16]: min, max, kurtosis and
skewness of vertical and horizontal acceleration respectively (frequency domain). For

each 16D feature vector, the standard deviation is calculated over all windows.

Gyroscope Features We consider only time domain features from the magnitude of
gyroscope readings, that is, [1 - 4]: mean, std, min, and max. Here, we use a non-
overlapping rectangular window of size 320 msec for framing purpose. Finally, to get
4D feature vector from recorded gyroscope readings, the standard deviation is computed
over all windows.

Ultimately, we have total 26 features, that is, our current feature vector is of 26

dimensions (6D + 16D + 4D).

3.3.2.3 Classifier

We use Random Forest (RF) classifier [77], provided by WEKA tool!, to recognize
phone placements. RF is an ensemble learning method for classification that operates
by constructing a multitude of decision trees at training time and outputting the class
that is determined by a majority vote of the trees. We preferred Random Forest because
it is fast and efficient for training, and more importantly, it is computationally much
lighter than other classifiers. Note that, computational time of RF is O(T'(M N log(N)),
where T is the number of trees in the ensemble, M is the number of features and N is
the number of samples in the dataset.

The configuration of the random forest classifier is as follows: (a) It is a classification

model. (b) Number of trees used are 100 (bagging). (c¢) Random Forest (RF) uses

"http:/ /www.cs.waikato.ac.nz/ml/weka/
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standard variance reduction as split selection criterion. (d) In RF, each tree is ’fully
grown’ which means it continues until each terminal node has a specified number of data
points. So the total number of nodes in each tree is not fixed. There is a max nodes
parameter than can be set to limit the total number of nodes, but I think that is just
to prevent trees from getting to large to fit in memory rather than being an tunable
accuracy parameter. (e) Bagging has a single parameter which is the number of trees.
(f) Fraction of random features used per node in sqrt(D). (g) Depth of trees present in
the forest is not fixed. All trees are fully grown binary trees (unpruned). (h) Pruning is
required in decision trees to avoid overfitting. In random forest, the data sample going
to each individual tree has already gone through bagging (which is again responsible
for dealing with overfitting). There is no need to go for pruning in this case. (i) Our
training dataset is quite well balanced across all classes. So, there is no worry about
imbalanced dataset while performing classification with random forest.

To detect phone’s current context, we used four Random Forest classifiers. As per
Figure 3.2, Random Forest; for non-metal inner surfaces, Random Forests for metal inner
surfaces, Random Forests for non-metal outer surfaces, and Random Forest, for metal
outer surfaces. The basic difference between these classifiers is that they are trained
with different datasets. For example, Random Forest; is trained with a dataset which
belongs to the non-metal inner surface group, whereas, the dataset of Random Foresto

belongs to the metal inner surface group.

3.4 Experiments

3.4.1 Performance of Change in Phone Placement Detection Module

We implemented change in phone placement detection module using Samsung Galaxy
S4 Android smartphone and we capture its accelerometer data at 100 Hz sampling

frequency. Time window (), data interval (6) and threshold setting are an essential part
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of our algorithm as shown in Figure 3.1. We analyzed accelerometer pattern from 10
participants in different phone placement changing scenarios and set t = 2 sec, Th; =
2.5 m/sec?, Thy = 11 m/sec?, Thy = 16 m/sec?, § = 250 msec, Thy = 1 and Ths =
8 after conducting experiments. Ultimately, we achieved 71.24% accuracy to detect the

change in phone placement.

3.4.2 Performance of Phone’s Context Sensing Module
3.4.2.1 Data Collection

For the experiments, we use Samsung Galaxy S4 GT-19500 Android smartphone which
has inbuilt microphone, accelerometer, gyroscope, magnetometer and proximity sensors.
To collect training and test dataset, we tried for three days in a lab environment with
Galaxy S4 phone on 13 different surfaces. For each surface, we vibrated the phone for
4 seconds and recorded vibration sound using microphone at 44.1 KHz sampling rate,
motion data using accelerometer and gyroscope at 100 Hz sampling frequency, magnetic
field strength using magnetometer at 100 Hz sampling rate and proximity distance using
proximity sensor at a sampling frequency of 10 Hz. We repeated this procedure 80
times for each surface with different phone orientations. In this way, we collected total
1040 samples (80 x 13) and divided it into four datasets, that is, dataset; for Random
Forestq, datasets for Random Forests, datasets for Random Forestg and dataset4 for
Random Foresty. The dataset; contains 240 samples from pant’s pocket, backpack, and
wooden drawer; datasets contains 80 samples from metal drawer; datasets contains 640
samples from wooden table, soft-bed, glass table, plastic chair, cart-box, fabric chair,

phone holder, and user’s hand; datasety contains 80 samples from metal chair.

3.4.2.2 Classification Results

We split each dataset into three subsets for conducting three-fold cross validation test.

Table 3.2 represents the overall performance of SurfaceSense system. The average accu-
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racy stands at 91.75%, with more than half of the phone placements achieving accuracies
over 90%. From our result, it is observable that soft and hard surfaces can be distin-
guished with good accuracy, but it is quite difficult to recognize several similarly hard
surfaces (e.g. wooden table and glass table). However, this is an excellent outcome with
respect to the results of few previous works [50], [51], [37] and [52].

Table 3.2: Performance evaluation of 13 phone placement detection.

Placements Accuracy | Confused Surfaces
Pant’s pocket 98.82% backpack (1.18%)
Backpack 97.21% pant’s pocket (2.79%)

Wooden drawer | 100% -

Metal drawer 100% -

glass table (16.61%),
card-board box (4.96%)
wooden table (25.12%),
plastic chair (5.47%)
glass table (13.52%),
Card-board box | 78.88% plastic chair (3.9%),
wooden table (3.7%)
glass table (3.2%),
card-board box (1.6%)

Wooden table 78.43%

Glass table 69.41%

Plastic chair 95.2%

Soft-bed 86.37% fabric chair (13.63%)
Fabric chair 88.54% soft-bed (11.46%)
Phone holder 100% -

User’s hand 100% -

Metal Chair 100% -

3.5 SurfaceSense Android App

We developed ‘SurfaceSense’ as an Android app in Samsung Galaxy S4. The main
components, described in Section 3.3, were entirely implemented in Java SE 7 and suc-
cessfully running on the Android smartphone. It took almost 22.35 seconds to detect a
phone-placement correctly. We also measured the CPU, memory, and power consump-

tion footprints of SurfaceSense app on Galaxy S4 with the help of PowerTutor! and OS

"https://play.google.com/store/apps/details?id=edu.umich. PowerTutor&hl=en
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Monitor! applications, available at Google Play Store. The CPU usage is less than 4%
during idle state and on average of 14% at the processing time. The memory consump-
tion is ~7.38 MB during silence and reaches ~12.26 MB while running. The average

power consumption for sensor reading is less than 18.76mW.

3.6 Mobile Interactions Based on SurfaceSense

We developed several example applications to show how this SurfaceSense framework
can be used for mobile interactions. For examples:

Placement-based Notification: Using SurfaceSense would enable a person to set
placement-specific notification preferences. Vibrate mode is preferable if the phone is
inside a trouser pocket while ringing mode is most suitable if it is on the table.

Fine tuning of ‘pedometer’ app: If phone placement is inside the pant’s pocket, then
only pedometer app will count our footsteps. If the phone is in user’s hand, then this
app should stop counting because involuntary hand movement may mislead its accuracy.
Find my phone app: Sometimes we forget where we keep our phone after the last used.
This app will help us to find our phone by sending the message like ‘your phone is at
the office on your desk’ or ‘your phone is at home in your backpack. In this application,

we integrated phone’s GPS with SurfaceSense to infer more details context information.

3.7 Conclusion

We presented SurfaceSense, which is inexpensive, calibration free, and does not demand
any external hardware. It only requires phone’s built-in accelerometer, gyroscope, mag-
netometer, microphone and proximity sensors. This placement aware technique can be
applied easily to develop various context-aware applications. Our proposed method pro-

vides almost 91.75% accuracy to recognize 13 different phone placements. One technical

"https://play.google.com /store/apps/details?id=com.eolwral.osmonitor&hl=en
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issue is that we did our experiment with a plastic covered phone, but recognition rate
may be affected by the presence of rubber cover or a leather cover. In future, we’ll study
our algorithm (a) with different mobile devices except Samsung Galaxy S4 and (b) in a

noisy environment to test its feasibility at high scale.
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Chapter 4

Magnetic Field Based Around
Device Interaction for Text Entry

in Smartphone

This chapter presents ‘MagiText’ that expands the text entry space beyond the physical
boundaries of a device, to overcome the problems of touchscreen input. Our proposed
approach uses the mobile phone’s inbuilt magnetometer sensor to recognize 3D space
handwritten character gestures. The key idea is to influence the magnetic sensor by
writing character gestures (i.e. Graffiti or EdgeWrite) in front of the device using a
properly shaped magnet taken in hand. The movement of this magnet changes the mag-
netic flux pattern around the device, and it is sensed and registered by the magnetometer
sensor. Then, we classify this flux pattern using Support Vector Machine (i.e. SVM)
classifier. The experimental result shows that participants can achieve better accuracy
in character recognition with EdgeWrite gesture-set compared to Graffiti.

The rest of the chapter is structured as follows. Section 4.1 describes the motivation
of our work. Section 4.2 describes the MagiText framework and Section 4.3 includes

experimental results. Section 4.4 details the implementation of MagiText as an Android
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App. Finally, Section 4.5 concludes this chapter.

4.1 Motivation

With the proliferation of electronic technology, small handheld devices (i.e. smartphones,
tablets, music player, etc.) are now affordable and pervasive in many usages. These
devices have become the mainstream communication and computing platform. In fact,
they provide a rich text input space. But, none of these devices do have a physical
keyboard, most text entry is done by using small soft keyboards displayed on the device’s
touchscreen. A standard keyboard contains almost 104 keys, and to fit all these keys
in a small area, we usually reduce the number of displayed keys to a minimal amount,
for example, the letters of the alphabet and one or more status modifier keys. Although
this approach helps, it leads to keys of small sizes. For instance, the popular Swype!
virtual keyboard provides each key size of 0.5 x 0.9 cm.

Further, the traditional way of entering text with the smartphone is Qwerty soft
keyboard which demands a long visual search time and suffers from fat finger problem
[78]. It is also hard to hit the keys while users in mobile scenarios and at the same
time, letters are difficult to read, especially when eyesight-impaired. In recent past,
researchers have developed several techniques to solve these problems. They proposed
different modified versions of virtual keyboards such as BigKey [79], Fisheye keyboard
[80], HoverZoom [46] etc. They tried with gesture-based approaches such as Vector
keyboard [81], Unistrokes and Graffiti [82], ShapeWriter [83], H-4 Writer [84] etc. They
also used speech [85] as an alternative, but it suffers from environmental noise and it
demands server-based architecture for automatic speech recognition.

In this dissertation, we are particularly interested in around device interaction tech-
nique (ADI) for text input on smartphones because this approach expands the text entry

space beyond the physical boundaries of a device. This ADI commonly deals with dif-

"http:/ /www.swype.com/

48



4.2. MagiText Framework

ferent types of sensory inputs such as infrared distance sensor, camera, depth sensor,
electric field, and magnetic field. Among all these sensory inputs, magnetic field based
ADI is much simpler as (1) its hardware (i.e. magnetometer sensor) is already available
in the current mobile devices; (2) it consumes very less power; (3) it does not suffer
from illumination variation and occlusion problems like camera based ADI; (4) it can
pass through many materials, for example, it enables in-pocket interaction. This chap-
ter provides the details design and implementation of the magnetic field based around

device interaction technique for text input with mobile devices.

4.2 MagiText Framework

The MagiText system architecture fundamentally comprises three parts: (1) input from
magnetometer sensor (2) feature extraction from sensor data (3) modeling of multi-class
Support Vector Machine (i.e. SVM) classifier. The working of the said three modules is

discussed in the following sub sections.

4.2.1 Input from Magnetometer Sensor

MagiText supports the effective use of 3D space around the device for handwritten
English alphabets recognition. The underlying principle of our MagiText approach is to
influence the phone’s embedded magnetic sensor by drawing character gesture around
the device along 3D trajectories using a proper shaped (may be a ring, disk or rod
type) magnet mounted on the finger. Here, we used Graffiti! (see Figure 4.1) and
EdgeWrite [47] (see Figure 4.2) as character gesture and users have to press a button
to indicate the starting and ending it. The temporal pattern of the magnetic flux’s
deformation is sensed by capturing the sensor values on x, y, and z coordinates. Note
that, the range of this output changes from device to device. For instance, in Samsung

Galaxy S4, the value range is £200uT, whereas, it is £128uT for iPhone 3GS. The

"http://en.wikipedia.org/wiki/Graffiti_ (Palm_ OS)
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Figure 4.1: Graffiti Characters.
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Figure 4.2: EdgeWrite Characters.

4.2.2 Features Extraction

of the gesture.

50

magnetic sensor can be affected by Earth’s magnetic field and to eliminate this magnetic

noise, we apply a time derivative operator on the output signals of the magnetic sensor.

The next step in MagiText is feature extraction from recorded magnetometer signal.

Here, we extract features over samples in an interval labeled with the starting and end

To capture the temporal pattern of the character gesture in a more detailed way,
we divide the gesture interval into three equal length windows, extract a feature vector
from each window and finally, concatenate three feature vectors to form a new feature
vector to be used for the gesture classification step. Features used in this study are
listed in Table 4.1. These features yield 32 elements feature vector for each window and

altogether three windows form 96 elements feature vector for each character gesture.



4.3. Experiments

Table 4.1: Selected features of magnetometer signal.

Type Feature Name Coef.
Mean and S.D. of magnetic field
6
strength along x, y, and z
. Mean and S.D. of Euclidian norm
Time f magnetic field strength along x, y, and z 2
Domain |2 & & &% ¥
Piecewise correlation between magnetic
3
field strength along xy, yz, and zx
Zero Crossing Rate (ZCR) 3
along x, y, and z
Mean and S.D. of magnetic field
6
strength along x, y, and z
Frequency Max. and Min. of magnetic field
. 6
Domain strength along x, y, and z
Kurtosis and Skewness of magnetic field
3
strength along x,y, and z

Notes: S.D.: Standard Deviation; Coef.: Coefficients

4.2.3 SVM Classifier Modeling

The extracted feature vector is used as input to multi-class Support Vector Machines
(SVM) to classify different character gestures. There are two approaches to build multi-
class SVM : (a) one-versus-one and (b) one-versus-all. In our approach, we have used
one-versus-all strategy [86]. The non-linear kernel function namely radial basis function

(RBF) is applied in our experiment and it is defined as

, (- u(z—z’)u%)
RBF : K(z,z') = exp 202

(4.1)

x and 2’ represent feature vectors in input space. || (x—2') || denotes squared Euclidean

distance between the two feature vectors. ¢ is a kernel parameter and set o = 10.

4.3 Experiments

This section consists of three subsections which are discussed below.
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Figure 4.3: Experimental setup of Magi- Figure 4.4: GUI of MagiText.
Text.

4.3.1 Apparatus

We used inbuilt magnetometer sensor of Samsung Galaxy S4 GT-19500 Android smart-
phone and placed N54 grade, disk-shaped (10mm x 3mm in diameter and height re-
spectively) neodymium magnet on the finger using a small strip of Velcro. This magnet

provides a useful range of about 10 cm and its magnetic field strength is 0.7179 Tesla.

4.3.2 Data Collection

To collect training and testing dataset, we tried for four days in the lab environment.
We invited 3 users (2 Male + 1 Female), aged between 22 and 26 years. All were regular
smartphone users, right-handed, and spend on an average 4 hours per day. But, none
had used Graffiti and EdgeWrite earlier. Each participant received a demonstration
before experiments and practiced each alphabet at least 15 times. For quick learning, a
printed copy of two unistroke character sets was visible during trials.

Each user holds the phone in one hand and moves the magnet mounted finger in
front of the device (see Figure 4.3). They were asked to repeat each gesture 50 times.

We developed an Android application to record the magnetic signals at 100 Hz sampling
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frequency. In this way, we collected total 7800 samples (i.e. 50 times x 3 users x 26
alphabets x 2 types gesture set). There was variation in duration of recordings per
character per user. This difference also depends on the input character gesture. We
observed that average time to input an alphabet was 2.68 sec. Note that, we consid-
ered this variation in duration of recording in our training dataset. Then, features are
extracted from those signals as described earlier. The extracted features are used for

classification using SVM.

4.3.3 Classification Results

We perform two separate experiments - one for Graffiti and another for EdgeWrite. The
Graffiti and EdgeWrite dataset contain 3900 samples each. We split each dataset into
10 subsets for carrying out a ten-fold cross validation test. The number of samples in
training, validation, and test sets are in 6:2:2 ratio. To analyze the classifier performance,
we used F) score [87]. Let, the amount of true positives is TP, the amount of false
positives is F'P, and the amount of false negatives is F'N. Then, Precision is defined
as P = %. Recall is defined as R = TP:CF% and F} is %. The F} score ranges
from 0 to 1. Table 4.2 represents the overall performance of MagiText system. From our
result, it is observed that MagiText system based on EdgeWrite character set can achieve
89.4% accuracy whereas Graffiti can distinguish characters with 81.2% recognition rate.
This is because a user can easily map the EdgeWrite character’s corners with the phone’s

four corner points at the time of drawing gestures. Hence, EdgeWrite gesture input is

less ambiguous compared to Graffiti.
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Table 4.2: Character Recognition Performance of MagiText System

Recognition Rate(F-Score)

Characters Graffiti EdgeWrite
A 0.764 0.924
B 0.719 0.841
C 0.733 0.866
D 0.845 0.929
E 0.825 0.931
F 0.862 0.908
G 0.759 0.972
H 0.792 0.861
I 0.828 0.848
J 0.814 0.839
K 0.836 0.954
L 0.802 0.850
M 0.786 0.849
N 0.774 0.852
O 0.882 0.938
P 0.806 0.912
Q 0.844 0.938
R 0.783 0.880
S 0.852 0.929
T 0.863 0.914
U 0.794 0.908
A% 0.786 0.889
W 0.828 0.861
X 0.830 0.916
Y 0.848 0.894
Z 0.834 0.851

Average 0.812 0.894

4.4 Resource Profile of MagiText: CPU, Memory & Power

Consumption Benchmark

We developed MagiText system as an Android application in Samsung Galaxy S4. The
principal components, as described in ‘MagiText Framework’ section, were fully imple-

mented in Java SE7 and successfully running on Android smartphone. To build this
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prototype, we used libgdx library! to perform a fast Fourier transform (FFT) on incom-
ing sensor signals in real time. We also used SMO WEKA? machine learning library for
SVM classifier. Figure 4.4 shows the app’s user interface (UI). By selecting ‘Start’ and
‘Stop’, a user enters character gestures and collects magnetic sensor readings and ‘Del’
button is used to delete recorded magnetic signal. Finally, by pressing ‘Recognize Char-
acter’ button, it extracts features from the signal and recognizes a particular character
from input gesture. The duration of the overall process is ~35.23 seconds.

We also measure the CPU, memory, and power consumption footprints of MagiText
with the help of ‘PowerTutor’ and ‘OS Monitor’ apps, available at Google Play Store.
The CPU usage is less than 4% during idle state and on average of 16% at the processing
time. The memory consumption is ~7.8MB during silence and reaches ~20.54MB during

running period. The average power consumption for sensor reading is less than 18.76mW.

4.5 Conclusion

We presented MagiText, based on drawing character gesture in the space around the
device using a magnet. We also compared the character recognition accuracy on the
basis of Graffiti and EdgeWrite gestures. This approach can be particularly suitable for
mobile and tangible devices, and we can use it as an efficient text entry mechanism,
instead of touch screen keyboard, for taking short messages or notes quickly. Magnetic
field sensing based around device interaction is elegant because it uses magnetometer
sensor that is already available on current generation mobile devices. Moreover, magnets
are passive and have no power requirements. An obvious limitation is that the user needs
to be instrumented with a ring-shaped magnet.

In this work, we did not evaluate the text entry speed (i.e. words per minute)

because our system is taking almost 30.18 seconds to recognize a character. This is

thttp://www.java2s.com/Code/Jar /g/Downloadgdxaudiojar.htm
2http://www.cs.waikato.ac.nz/ml/weka,/
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our early exploration of around device interaction based text input system. However,
a lot of things need to be done to make this approach robust and practically usable.
In future, we will focus on (1) studying sophisticated signal processing and machine
learning algorithms (i.e. Hidden Markov Models) to improve MagiText performance in
terms of character recognition accuracy and time required to identify a character gesture;
(2) user independent character recognition; (3) automatic identification of gesture starts
and ends; in this regard, performing a Viterbi decoding might be useful to find character
boundaries implicitly; (4) a large-scale user study to understand the acceptability of

MagiText system.
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Chapter 5

Efficient Text Input on

Smartwatches

In the present day context of wearable computing, smartwatches augment our mobile
experience even further by providing information at our wrists. It offers the ability to
read text messages, emails, notifications, etc. instantly, once it is synchronized with
a smartphone. But, performing efficient text input task on the smartwatch is quite
difficult due to its tiny touchscreen display. In this chapter, we present two techniques
for text entry on smartwatches - ‘ETAO keyboard’ and ‘3D typing using hall effect
sensors’. The ETAO keyboard is a full-fledged soft-keyboard where a user can input the
most frequent English alphabets with a single tap and other keys (i.e. numbers and
symbols) by a double tap. On the other hand, the Hall effect sensors based text entry
technique effectively uses the 3D space around the smartwatch for entering alphanumeric
characters. This technique does not consume any screen space, does not need any visual

search to find a character and does not suffer from fat finger problem.

The rest of the chapter is structured as follows. Section 5.1 and Section 5.2 describe
the details of ETAO keyboard and 3D typing using Hall sensors respectively. There are

five subsections under each section and these sub-sections present motivation, the design
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of proposed approach, implementation, user study result, and conclusion.

5.1 ETAO Keyboard: Text Input on Smartwatches

5.1.1 Motivation

Over the past few years, the world has seen a rapid growth in wearable computing
and demand for wearable products. In recent times, smartwatches have gained a lot of
public attention as one of the most popular wearable devices. It allows users to access
several applications (messaging, email, calendar, maps, etc.) running on smartphones,
without the need to use their phones. Although applications are instantly accessible on
the watch, users face difficulties to reply immediately as there is no text entry method
on the same device. While Qwerty soft keyboard has become the dominant text input
modality for mobile devices but it’s hard to fit on tiny wearable devices. Most present
day smartwatches either don’t offer a virtual keyboard as a text entry mechanism or
provide methods like shorthand gestures which take lengthy user training sessions to get
accustomed to it. Most modern smartwatches support the ‘speech to text’ mode, but
there are some restrictions of voice typing - privacy issues, surrounding noise, various
pronunciation styles and it demands constant Internet connectivity.

Most of the earlier research works [10]- [17] related to text entry on smartwatches
tried to fit traditional Qwerty soft keyboard in an intelligent way and also used touch
sensitive wristband for typing. The existing virtual keyboards, which provide good
typing accuracy, are slow in nature and keyboards which support faster typing, are
error-prone. Qur aim in this work is to develop a keyboard which will try to establish a
good trade-off between typing speed and error rate.

In this chapter, we present ETAO keyboard, a technique that supports faster and less
erroneous text input on ultra-small interfaces of smartwatches. It supports all English

alphabets, numbers and most symbols that we use on a daily basis. Using our proposed
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Hello World !!‘ Hello World !!‘ Hello World !! Hello World !!‘ Hello World !!

Figure 5.1: ETAO keyboard layout: (a) home screen (b) intent layout of the second button
of first row (c) intent layout of the third button of first row (d) digit’s intent and (e) special
symbol’s intent.

keyboard user-interface (UI), a user can select most frequent characters (i.e. E, T, A, O,
I, N, S and R) with a single tap and remaining characters, numbers and symbols with
two taps. It supports faster typing with minimum keystrokes per character (KSPC). We
use two swipe gestures for delete and space. Here, we consider ‘tap’ as the prime input
method because it is really easy to perform when walking in a street. Moreover, this

layout quickly eliminates ‘fat-finger problem’ by providing keys with bigger buttons.

5.1.2 Design

The area provided by a smartwatch is really small (1.65" screen diagonal) hence, in
our proposed ETAO keyboard, we apply the concept of key layering where certain keys
appear in one layer, and the rest appear in other layers. Except the two middle keys in
the first row, the size of each key has been set at 40 dp. This size has been chosen after
many trial and error tests so that the keys are not too small or too large to hamper the
layout.

ETAO keyboard supports all English alphabets, numbers and most symbols that we
use on a daily basis. The design layout consists of two layers of input modes where a
user can access most frequent letters (i.e. E, T, A, O, I, N, S, and R) with a single tap
and remaining characters with two taps. The first layer i.e. main screen is divided into
two regions. The top most region has a text field where typed characters will appear.

The bottom region has four ‘grid keys’ and eight individual buttons.
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=
5
=
=
o
-2

Figure 5.2: ETAO Keyboard prototype running on LG W100 smartwatch.

The leftmost (first) grid key is used for numeric entry. The second and the third
(grid) buttons are used to enter the remaining English alphabets which are not mentioned
separately. Each of these grid keys houses 9 buttons of 40 dp each. The second grid
has the letters B,C,D, F,G,H and J,K,L. arranged alphabetically ( see Figure 5.1(b)).
The third grid key comprises M,P,Q, U,V,W, and X,Y,Z also arranged in alphabetical
sequence (see Figure 5.1(c)). The right most (fourth) grid button is used to enter special
characters such as symbols and punctuation marks (see Figure 5.1(e)). There are four
buttons that contain two symbols each. For example, the opening and closing parenthesis
‘(" and ‘)’ are present on a single key. To enter the opening parenthesis, the user just
needs to tap the button and in order to enter the closing parenthesis, the user has to
long press the same key. Moreover, a special back button is provided in all the four grid
keys. This is to help the user to get back to the main screen in cases of unintentional
opening of a layer.

The remaining eight buttons on the main screen correspond to the characters ‘E’,*T”,
‘A’ O’ and ‘T, ‘N7, ‘S’ and ‘R’ These eight characters are arranged on the basis of most
frequently occurring English alphabets, starting with highest frequency character ‘E’ to
the relatively less frequent ‘O’. Note that, these eight letters cover almost 65.04% of all

letter frequency occurrences in English !,

Two swipe gestures are designed for space and delete key. To input a space the user

"http://www.math.cornell.edu/ mec/2003-2004/cryptography /subs/frequencies.html
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has to swipe down by tapping either of the two grid buttons present in the middle and
similarly, to delete a character the user has to swipe left by tapping on either of these
grid buttons. Long pressing any key makes the character capitalized. When a key is

pressed it provides a haptic feedback via 100 msec vibration to the user.

5.1.3 Implementation

We use the ‘LG W100 Watch’ and the ‘Android Wear’ platform for implementing our
ETAO keyboard (see Figure 5.2). The G watch comes with Android Wear as the native
OS. Hence, the development of the app had to be done on Android 4.4W API, which is
compatible with Android Wear. This API fully supports the gestures that we incorpo-
rated in our application. The watch has the screen size of 30mm x 30mm. The home
screen has all the buttons on 25mm x 25mm layout which includes all the three rows of
the ‘button region’. We used a keypad size of approximately 20mm x 20mm in a grid
(the second layer of input) and placed nine keys with a return button in this grid. This
translates to about 6.6mm x 6.6mm for each key and this area is big enough to avoid
most fat-finger problems. To compare the key-size, we consider few other keyboards’
key-size. For example, the size of the ZoomBoard [10] key is 2.9mm X 2.9mm when
not zoomed and in the zoomed state is 5.8mm x 5.8mm.The area of each key of the

SplitBoard [14] is 4.8mm x 6.5mm and is a little larger for space and backspace key.

5.1.4 User Study
5.1.4.1 Method

To evaluate the feasibility and practicality of ETAO keyboard, we performed some text
entry tests and compared it with three existing keyboards like Qwerty, ZoomBoard,
and SplitBoard. Ten post-graduate students (6 male + 4 female; mean age: 24) were
recruited. They are all well experienced with smartphones, but not with smartwatches.

Before the beginning of the tests, the participants were shown the interface and
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were informed of the gestures that were built into the keyboard. A demo session was
conducted to educate them about the keyboard layout. For actual evaluation purposes, a
total of 45 phrases were selected at random from the MacKenzie and Soukoreff [88] texts
and were grouped into three sets of 15 each (i.e. Phrase_Set_ 1 - short, Phrase_Set_ 2 -
medium and Phrase Set_ 3 - long). The short phrase group were at most 23 characters
in length, medium phrases had less than 32 characters, and long phrases had more
than 32 characters. During the experiment, phrases were displayed to the users on a
desktop screen. The participants were requested to input text with their dominant hand
while they wore the smartwatch on their non-dominant hand. There were two scenarios:
sitting and walking inside the lab. The participants were asked to perform three sessions
in both the testing scenarios, each session included two trials and they had to write 15
phrases (we chose 5 phrases randomly from each of our three existing phrase-sets) in
each trial. We conducted the sitting environment tests, first for all the participants and
it spanned across three days. A gap of two hours was strictly maintained between each
session. After the completion of the sitting environment tests, the walking tests were
conducted. These tests also spanned three days, and the participants had to type the
same phrases as they had typed in the sitting environment. Participants were instructed
to correct any errors they made during the typing session, but a constraint was imposed
upon them. The constraint being that they were allowed to correct a mistake, only if
they observed it at the time of committing the error. So, if they typed along and realized
later that they had made a mistake in a previous word or the beginning of the word they
were typing, they weren’t allowed to rectify the mistake. Note that, we also followed the

same experimental setup protocol for the other keyboards.

5.1.4.2 Text Input Performance

In the experiment, we recorded the corrected WPM measure and not the raw WPM

measure as it would have included incorrectly typed characters during the calculation.
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Sitting
14 Walking
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Phrase = Phrase | Phrase Phrase | Phrase | Phrase
Set1 | Set 2 | _Get3 Set 1| _Get2 | _Set3
WQwerty 6.3 71 73 EQwerty 5.1 54 5.2
E7oomBoard 84 39 8.9 EZoomBoard 78 8 81
m5plitBoard 119 125 122 mS5plitBoard 9.3 9.2 94
BETAO Keyboard| 127 121 1256 BETAOKeyboard| 9.2 9.5 9.1
(a) (b)
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WZoomBoard 9.4 8.3 3 WZoomBoard 97 0.2 9.8
mSplitBoard 111 o7 10.8 mSplitBoard 125 128 131
BETAC Keyboard 61 5.8 54 BETAO Keyboard 74 71 69
- (q) (d)

Figure 5.3: Typing speed in words per minute: (a) during sitting (b) during walking; Total
Error Rate: (c¢) during sitting (d) during walking.

To analyse the WPM and error-rate of different keyboards, we used repeated mea-
sures ANOVA and a pairwise comparison. As the Qwerty keyboard showed significantly
higher error rates, we removed it from our ANOVA measures and considered only three
remaining keyboards (i.e. ZoomBoard [10], SplitBoard [14] and ETAO Keyboard). This
removal was important as the inclusion of Qwerty would have given unnecessarily given

higher values in ANOVA and would not have helped in the proper analysis of results.

There was a major effect of the keyboards on WPM in sitting experiment (F(2,18)
= 60, p <0.05) and during a walk (F(2,18) = 47.227, p <0.05). Using ETAO keyboard,
participants were able to enter the phrases with 12.46 WPM (SD = 0.71) in sitting
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situation and 9.36 WPM (SD = 0.59) in walking scenario respectively. The Figure
5.3(a) & (b) represent the text entry speed of different keyboards during sitting and
walking. The ETAO was faster than the Qwerty (p <0.001) and the ZoomBoard (p
<0.05). However, there was no significant statistical difference between ETAO keyboard

and SplitBoard when we compared their text entry rates (p = 0.05).

A similar effect was also seen on the Total Error Rates(TER) during the sitting
experiment ((F(2,18) = 72.18, p <0.05) and while walking (F(3,27) = 80, p <0.05).
As can be seen from Figure 5.3(c) & (d), the Qwerty caused the most number of errors
when compared with the remaining keyboards. This was observed in both the sitting and
walking conditions. The ZoomBoard had an error rate lower than that of SplitBoard and
Qwerty (p <0.05). In our experiment, ETAO keyboard was the most accurate keyboard

to enter text efficiently in both sitting and walking scenarios.

The average UER (Uncorrected Error Rates) were 0.74% for the Qwerty and was
0.61% for the SplitBoard. The ZoomBoard had a UER of 0.48% while the ETAO key-
board had the least UER at 0.41%.

The participants were asked to order the keyboards on the basis of ‘learning-time’
involved. Most participants favored the Qwerty citing that it had the most common
key layout, and hence, it was easy to guess the location of a character, even though it
was cumbersome to type text with a small key size. The next favorite keyboard was
ZoomBoard as its interface was similar to Qwerty with zoom-in and zoom out features.
The SplitBoard was their third preferred choice as it is a scrolling Qwerty keyboard
and immediate learning is possible. Next they voted for ETAO keyboard. Participants
suggested that it took some time getting used to the different layers involved, but after
the initial learning effort, it was the easiest to type with. They also mentioned that after
getting accustomed with our keyboard, they felt that ETAO keyboard achieved the best

trade-off between error rate and typing speed.
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5.1.5 Conclusion

We introduced ETAO keyboard, a text entry technique for smartwatches with tiny touch-
screens. It allows a user to access eight most frequent English letters with a single tap
while others including digits and special symbols by double tap. Here, we used two
swipe gestures for ‘delete’ and inserting ‘space’. This layout easily eliminates the ‘fat-
finger’ problem by providing enough key-size and space between keys. The user requires
few minutes of training to be accustomed to this keyboard. In this study, we didn’t
consider any dictionary-based features and focused only on the key entry efficiency of
the keyboards. This is a definite shortcoming of this study. Nowadays, every modern
touchscreen keyboard uses a language model. For more practically meaningful results, we
would like to compare these keyboards after they are augmented with a dictionary-based

text prediction feature.

5.2 Using Hall Effect Sensors for 3D space Text Entry on

Smartwatches

5.2.1 Motivation

Smartphones became the most ubiquitous computing devices nowadays. Despite their
high portability, it is not possible to provide almost instant access to digital services
available in the smartphone to users as people typically carry these devices in pockets
and bags. To address this, the concept of smartwatches had been proposed. In the
present day context of wearable computing, smartwatches like Samsung Galaxy Gear S,
LG G Watch, Motorola Moto 360, Apple Watch, etc. are one of the most commercially
successful wearable devices. It allows users to access several applications (messaging,
email, calendar, maps) running on smartphones directly from their wrists, without hav-
ing to look at their phones. Although applications are instantly accessible on the watch,

users face difficulties to reply immediately as there is normally no standard text entry
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method on the same device. To give responses to text notifications on smartwatches,
users have to use the voice communication built-in application like Google Now! on An-
droid, Siri? on i0S. Text input using voice has certain limitations [89] like recognition
of voice in noisy environments, eavesdropping on private information, etc.

Recently researchers have invested their efforts to fit virtual Qwerty keyboards ei-
ther directly or with little modification on smartwatches [23-32]. However, on-screen
keyboards require precious screen space, suffer from the fat finger and occlusion prob-
lems. It also demands visual search to find a character. So, our objective is can we
design a text input technique which will not (a) require any screen space, (b) suffer
from occlusion problem, and (c) need any visual search and (d) confine users within
the limited touch area? To accomplish these criteria, in this chapter, we present hall
effect sensors based text entry mechanism that effectively uses the 3D space around the

smartwatch for entering alphanumeric characters.

5.2.2 Proposed Framework of Text Input Using Hall Effect Sensors

To avoid fat finger and occlusion problems during text entry on smartwatches, we develop
hall effect sensors based text input mechanism that effectively uses the 3D space around
the device for entering alphanumeric characters. For this purpose, four hall sensors are
placed in four corners (marked as 1, 2, 3, and 4) of a watch and the user draws characters’
gestures around the device using a magnet (may be ring or disk type) mounted on his
finger (see Figure 5.4(a)). These hall sensors become active when a magnet comes
into their sensing range. Our proposed technique adopts the EdgeWrite [47] mnemonic
gesture set for alphanumeric input. In short, EdgeWrite is a unistroke method originally
designed for stylus entry on PDAs by people with tremor. Here, we mapped each
EdgeWrite letter to four corners. For example, using the author’s labels for the corners,

the corresponding corner-sequences of the letters ‘A’, ‘N’ and ‘D’ are ‘132, ‘1423’ and

"https://www.google.com/landing/now/
http://www.apple.com/in /ios/siri/
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132

N
1423

(b)

3212

Figure 5.4: (a) Positions of four hall effect sensors in four corners of a watch and user is
trying to write ‘C”. (b) Three EdgeWrite characters and their corner sequences. The dots
mark the starting points.

Characters Corner sequences Characters Corner sequences
A 132 N 1423

B 4121 (o] 34123

C 3412 P 1434

D 3212 Q 34323

E 13412 R 143

F 341 S 3421

G 34321 T 432

H 4132 U 4123

I 41 v 413

1 321 w 41323

K 3142 X 4231

L 412 Y 4232

M 14232 4 4312

Numbers Corner sequences Numbers Corner sequences
0 32143 5 34121

1 32 6 3121

2 43212 7 431

3 4321 8 34213

4 41232 9 3432

Figure 5.5: Alphanumeric characters and its corner sequences.

‘3212’ respectively, and it is shown in Figure 5.4(b). The Figure 5.5 represents the corner

sequences of 26 alphabets and 10 digits. Note that, we modified the corner sequences

of three characters (‘E’, ‘K’ and ‘P’) for user convenience. However, there are two more

corner sequences, that is, ‘12’ and ‘21’ for spacebar and backspace key respectively. To

enter any alphanumeric character, users move their magnet mounted finger over hall

effect sensors following those corner sequences mentioned in Figure 5.5. If the drawn

corner sequence matches with the previously stored corner sequence pattern, then the

system recognizes the intended character.

This around device interaction based text entry method requires a solution to the

segmentation problem since there is no ‘stylus lift” event which is available in touchscreen
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Figure 5.6: Prototype of our proposed text entry mechanism for smartwatches. Here, ‘HS’
(red color text in the rightmost image) represents hall effect sensor. Using this setup, user
is trying to write ‘IT IS NICE".

interaction. Thus, we follow a A time-instant for segmenting two consecutive character
gestures. If a user passes his finger over any two hall sensors within the A period, then
our system understands that user is trying to follow the corner sequence pattern of a
particular character or number. Otherwise, it recognizes the previous corner sequence
and segmentation occurs, that is, the user is going to enter next alphabets or numbers.

In our experiment, we empirically choose the value of A as 950 msec.

5.2.3 Implementation

To realize our proposed text input technique, we place four A3144 hall effect sensors in
four corners of a mini breadboard (dimension: 47mm x 35mm x 8.5mm and it is almost
equivalent to a smartwatch touchscreen display) and mount N54 grade, disk-shaped
(10mm x 3mm in diameter and height respectively) neodymium magnet on the finger
using a small strip of velcro. Hall sensors are connected to an Arduino micro-controller
via an electrical circuit. On the other side, the Moto G (with Android OS version 5.1)
smartphone is connected to the Arduino via a USB OTG cable and it is also paired with

LG W100 smartwatch (with Android Wear version 4.4W) over Bluetooth. The complete
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setup is shown in Figure 5.6. When a user brings his magnet mounted finger near to a
hall sensor, then it becomes active and sends its value to the Arduino. Then Arduino
recognizes the intended character /number by matching with the predefined patterns and
transmits it to the phone’s Android application. Finally, the entered character/number

is transferred from the phone to the watch’s application and appended to a text-field.

5.2.4 User Evaluation

This section presents the results of the experimental evaluation we conducted with par-
ticipants. We first describe how we designed and conducted the experiments and then

we report the results of our evaluation.

5.2.4.1 Method

To evaluate the feasibility of our proposed text input method, we performed some text
typing tests and compared it with Qwerty layout available in Samsung Gear S. Five
university students were recruited (3 male and 2 female), all aged between 20-28 (Mean
= 24). The participants were primarily post-graduate students in our university’s In-
formation Technology department. None of them had any previous experience with
smartwatches, but they are all well experienced with smartphones and accustomed to
typing using phone’s default Qwerty soft keyboard.

Before the beginning of the actual tests, a demo session was conducted to educate the
participants about the hall sensors based text input mechanism. In the demo session,
each participant was asked to type in their names, surnames, addresses and telephone
numbers with the proposed technique. This was done to familiarize the participants
with the system further, on a personal level. Following this practice session, each user
spent almost 40 minutes for two sessions using the system to enter phrases, and finally
answered a brief questionnaire and informal feedback. The second system was then

tested in the same way. The evaluation was conducted in a calm lab environment.
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5. Efficient Text Input on Smartwatches

For actual evaluation purposes, a total of 10 phrases were selected at random from the
MacKenzie and Soukoreff [88] texts. This same phrase set was used by all participants
in each system. During the test, phrases were displayed to the users on a desktop screen.
Participants were able to rest whenever they wished, but were encouraged to rest between
phrases rather than mid-phrase. During typing, they were allowed to correct any errors
they made, but a constraint was imposed upon them. The constraint is that they were
allowed to correct a mistake, only if they observed it at the time of committing the
mistake. So, if they typed along and realized later that they had made an error in a
previous word or the beginning of the word they were typing, they weren’t permitted to
rectify the mistake. One more typing constraint is that users were not allowed to use

word-prediction, although it was available in Gear S smartwatch.

5.2.4.2 Results

In the experiment, text entry performance is measured in terms of WPM (words-per-
minute) and TER (total error rate). Note that, we recorded the corrected WPM measure

and not the raw WPM measure as it would have included incorrectly typed characters

during the calculation. The WPM is calculated as (Chara“ers pet minute) and TER as

5 characters per word

( INF + IF

m) x100%; where INF is incorrect not fixed characters, IF is incorrect fixed

characters and C is correct characters. The results for WPM and TER are shown in
Figure 5.7(a) & (b). On average, participants entered the phrases with 5.78 WPM
(SD=0.45) using the Qwerty keyboard and 3.9 WPM (SD=0.36) using the proposed
text input method. A t-test shows that two technique had a significant effect on the
WPM (p=0.02). The TER using the Qwerty keyboard was 22.12 (SD=3.43) and 6.4
(SD=2.62) for our proposed technique. This improvement in TER is significant (p=0.05).
Therefore, our proposed technique provides acceptable typing speed with minimum error

compare to Qwerty layout.

70



5.2. Using Hall Effect Sensors for 3D space Text Entry on Smartwatches

7 30
& T a5 -
— 5 —
g_ é 20
z 4 £
o
E £ 1
@
3
& &
2, g
g 2
=
F 5
1
0 P d 0 P d
ropose ropose
Querty Method Querty Method
|IMean 578 3g |IMean 2212 6.4
(@) (b)

Figure 5.7: (a) The average WPM for the Qwerty and Proposed Method. (b) The average
TER for the Qwerty and Proposed Method. In both figures the error bars show the standard
deviation.

Table 5.1: Questionnaire results (mean, sd) for responses given
on a Likert scale (1 = disagree strongly, 5 = agree strongly).

Statement Qwerty Proposed Text Input Method
Easy to use 2 (1.12) 4.3 (0.51)
Fast to use (O 34) 4.4 (0.33)
Easy to learn 2 (0.12) 4.0 (0.24)
Improve with practice (O 75) 4 (0.54)
Felt in control 0(0.44) 3.8 (0.38)
Easy to undo mistake (O 32) 3.9 (0.20)
Mental demand 5(0.11) 4.4 (0.23)
Physical demand (O 14) 3.9 (0.28)
Frustration 5(0.18) 2.2 (0.08)
Performance 1 (0.33) 2 (0.36)

5.2.4.3 Questionnaire Results

After the end of each session, we asked participants to give their valuable feedback to
a questionnaire comprised of ten statements on a 5-point Likert scale (1 = strongly
disagree, 5 = strongly agree). Our proposed text input method was rated significantly
higher than Qwerty keyboard. Majority (i.e. six out of ten) feedbacks were in favor

of our developed system. Table 5.1 represents the list of statements, mean responses,
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and significant differences. Moreover, users also reported few informal feedbacks. For
example, one female user said that she got confused between character ‘O’ and number
‘0’ most of the time. One male participant stated that he also did the same kind of
mistake while writing ‘K’ and ‘X’. Some users mentioned that they wanted to write

punctuation symbols using this system.

5.2.5 Conclusion

In this chapter, we introduced the hall effect sensor based text input mechanism for
smartwatches. This technique does not require any touchscreen space and visual search
to find a character but demands little cognitive load. User study reported that proposed
method can well balance between typing speed and error rate. This technique easily
overcomes the ‘fat finger’ problem. Here, we did a small-scale user study in controlled
environment, but in future (a) we will build a fully integrated system inside a watch
and will investigate other usability aspects of our proposed technique (b) we are also
planning to use proximity sensors instead of hall effect sensors to avoid the major concern

of carrying an extra magnet on finger.
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Chapter 6

Side Pressure-Based Input for

Smartwatch Interaction

Smartwatches have gained a lot of public interest as one of the most popular wearable
devices in recent times, but their diminutive touch screens mar the user experiences.
The small screen of watch suffers from visual occlusion and the fat finger problem. To
address these issues, we present ‘PressTact’ that extends interaction space beyond the
watch surface to the sides of the device. It augments smartwatches with four pressure
sensors - two sensors on the left side of a watch and another two on the right side.
It enables users to input different levels of pressure that can be used for bi-directional
navigation (zooming, scrolling, rotation) on smartwatches. In this chapter, we explore
the pressure event based input vocabulary set. Our preliminary user study shows that
participants can input different pressure levels (light press, medium press, and strong
press) in discrete and continuous mode with an acceptable accuracy. Finally, we develop

several example applications to illustrate the potential of the proposed technique.

The rest of the chapter is structured as follows. Section 6.1 describes the motivation
of our work. Section 6.2 presents PressTact prototype and Section 6.3 defines pressure

event vocabulary for interactions. Section 6.4 details user study of PressTact input
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vocabulary. We demonstrate several example applications in Section 6.5 and finally,

Section 6.6 concludes this chapter.

6.1 Motivation

Smartwatches have become increasingly popular particularly at the consumer level as an
emerging computational form factor due to the unprecedented success of miniaturization
technology. The primary input methods for the commercially available smartwatches are
touchscreen and the physical buttons located on its side. However, its small touchscreen
limits available interactive surface and lacks tactile feedback. Simply making smart-
watches larger to provide more space for interaction is not a feasible option as this
would make them more obtrusive.

In this context, we present PressTact that extends interaction space beyond the watch
surface to the sides of the device. It augments smartwatches with four pressure sensors
- two sensors on the left side of a watch and another two on the right side. It supports
users to input different levels of pressure in discrete and continuous mode that can be
mapped to different actions in a variety of applications such as zoom-in and zoom-out
a picture, rotating an image, scrolling a list at variable speed, select and edit text. Our
approach is related to the work done by Spelmezan et al. [90] where they installed two
continuous pressure sensors on the one side of a smartphone to detect squeeze based
inputs. In our case, we are particularly interested in exploring this side pressure sensors
based interaction for smartwatches as this kind of wearable device has a fixed position
on the wrist and it is less likely to be misplaced. Here, we report initial results from
a study on how users can comfortably input different levels of single sided (pointing
type) pressure and two-sided (grasping type) pressure in wristwatch context. We also
consider the chorded keyboard! to take few design decisions in our experiment. Further,

the pressure sensor has several advantages - it requires very less power to operate, it

"https://en.wikipedia.org/wiki/Chorded_ keyboard
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Figure 6.1: (a) Interlink Electronics 400FSR pressure sensor positions around a smart-
watch. The positions are marked as ‘A’, ‘B’, ‘C’ and ‘D’ (b) The experimental PressTact
prototype with LG W100 smartwatch.

provides inexpensive input interface, users can rapidly switch between different pressure
modes and it is thin enough for wearable devices. Because of its thin size, pressure
sensors can be easily integrated into the smartwatches without significantly changing

device’s form-factor.

6.2 The PressTact Prototype

The PressTact prototype, shown in Figure 6.1, lets users apply pressure onto the bottom-
left sensor (A), the bottom-right sensor (B), the top-right sensor (C) and the top-left
sensor (D) individually or in a combination of any two sensors simultaneously. Our
prototype has four primary components: LG W100 smartwatch running on Android
Wear, Moto G Android smartphone, four force-sensing resistors (Interlink Electronics
FSR 400), and Arduino Mega ADK. The FSRs are attached to the body of a smartwatch
in the configuration shown in Figure 6.1. Each FSR has a round sensing area of 7.62
mm diameter and works like a variable resistor whose resistance changes when a force or
pressure is applied. The FSRs don’t have a linear resistance vs. force characteristic. In
order to linearize pressure input, an op-amp based current-to-voltage converter circuit

was used as recommended by [91]. The pressure sensors are connected to the Arduino
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Table 6.1: PressTact input vocabulary consisting of 30 pressure-events

Pressure Combination of Force-Sensing Resistors
Levels A | B C D AB | CD | AC | BD | AD | BC
Light Press H#1 | #4 | #7 | #10 | #13 | #16 | #19 | #22 | #25 | #28
Medium Press | #2 | #5 | #8 | #11 | #14 | #17 | #20 | #23 | #26 | #29
Strong Press H#3 | #6 | #9 | #12 | #15 | #18 | #21 | #24 | #27 | #30

micro-controller via an electrical circuit. The Arduino samples pressure sensor data
at 50 Hz and 10 bit resolution and sends it to Moto G phone using a HC-05 serial
port bluetooth module. The phone processes the sensor data, runs an algorithm for
recognizing different pressure events, and transfers the detected pressure input to a

paired smartwatch.

6.3 Pressure Event Vocabulary for Interaction

Our objective is to propose different pressure events that could be combined to support
a richer interaction and at the same time, they should be unambiguous to recognize.
We thus consider that users can apply pressure on each sensor individually or in a
combination of any two sensors simultaneously. It results in total ten types of FSR
combinations - Press (A), Press (B), Press (C), Press (D), Press (A, B), Press (C, D),
Press (A, C), Press (B, D), Press (A, D) and Press (B, C). Further, users can actuate
FSRs at different levels - light press, medium press, and strong press. To recognize three
discrete pressure levels, we take the average of 500 msec sensor data (F,,,) each time

and check the following conditions:
e Light press if 0.5 < Fy < 3
e Medium press if 3 < Fj,9 < 5.5
e Strong press if 5.5 < Fp,g < 10

Here, we measure input force in Newton, and a user can apply approximate 10N force
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at the maximum. We use 0.5N thresholding to avoid unintended pressure input. Ulti-
mately our input vocabulary consists of 30 (10 combinations of FSRs x 3 pressure levels)

different pressure events which are represented in Table 6.1.

6.4 User Study of PressTact Input Vocabulary

In order to evaluate the user’s ability to trigger each of the thirty pressure events, we
performed a pilot study in which the participants were asked to selectively input different

levels of pressure on demand.

6.4.1 Method

We developed one Android application where users have to input target pressure ac-
cording to the instruction, and they can visualize the corresponding sensor’s pressure
level through a progress-bar and a text-box situated at the right most side as shown in
Figure 6.2. Further, our system also provides vibration feedback. Users will feel light,
medium, and strong intensity of vibration based on the different levels of input pressure.
We designed targeting test in two modes: discrete and continuous. For the discrete
mode test, the participants were asked to achieve the target pressure at the first press
and then release the sensor(s). For the continuous mode test, after attaining the target
pressure at the first press, they have to maintain that target pressure for three seconds
and then release the sensor(s). Note that, users will feel 500 msec of vibration for the
discrete mode and 3 sec of vibration for the continuous mode, as soon as they achieved
the target pressure. When a user successfully completes a trial, a new target task is
randomly generated in the application interface. During the experiment, we logged the
test type, trial number, correctness of the trials, and completion time for each trial.
Six unpaid volunteers (2 females, aged 24-32, average 28.6 years) from our Institution
took part in this study. All participants were right-handed, and none of them had any

prior experience with the smartwatches. They wore our PressTact prototype on their
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Figure 6.2: User study application interface: (a) light pressure on sensor B (b) simultane-
ous medium pressure on sensors B and C (¢) strong pressure on both C and D at the same
time.

left wrist and performed different pressure events with the right hand. As per our
instruction, they used their index finger to apply pressure to the individual sensor (i.e.
A, B, C, and D). They took the help of their index and middle fingers to press two
sensors located at the same side (i.e. BC, AD) and used both the thumb and the index
finger to press sensors on the opposite sides (i.e. AB, CD, AC, and BD). This user
study was performed in a lab environment, and users were in seated positions. Before
the beginning of the experiment, a demo session was conducted to make them familiar

with the software interface and the interaction mechanism. They also practiced before
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Table 6.2: Users’ success rate(%) for performing different levels of pressure in discrete and
continuous conditions.

FSRs Light Press Medium Press Strong Press
Discrete | Continuous | Discrete | Continuous | Discrete | Continuous
A 86.42 81.29 85.94 78.63 77.12 75.36
B 91.88 88.29 90.18 87.38 86.44 83.56
C 91.54 89.61 92.04 89.59 88.23 85.33
D 83.74 82.88 82.58 82.11 76.51 75.81
AB 98.46 98.54 97.89 96.53 98.12 96.75
CD 97.83 98.06 98.24 95.49 96.82 95.22
AC 85.93 82.27 81.41 76.61 78.13 72.85
BD 83.81 82.66 82.93 82.06 77.08 71.01
BC 88.84 88.03 85.63 84.93 80.31 77.72
AD 78.61 74.34 75.08 72.66 73.81 72.96

starting the actual test. Each user performed 30 pressure-events x 10 repetitions x 2
test modes = 600 trials and took approximately 54 minutes (SD = 4.6) to complete the

test. Lastly, we interviewed participants for informal feedback.

6.4.2 Results and Discussion

Table 6.2 represents users’ average success rate to input different levels of pressure (light
press, medium press and strong press) in discrete and continuous conditions.

From this table, we observe that the pressure sensors A, B, C, and D provide 80.79%,
87.96%, 89.39% and 80.61% accuracy respectively. Users achieve significantly better
performance from sensors B and C compare to sensors A and D while they are applying
pressure on each FSR. The reason is that users have comfortable index finger position
when they put pressure on B and C. If they want to input pressure on A and D, then
they have to rotate index finger by 180° and it is quite difficult to maintain different
pressure levels in this finger position.

While we consider any two FSRs jointly, then AB and CD combinations provide the
best success rate, that is, overall above 96%. In both cases, the position of sensors is

entirely opposite to each other (i.e. left and right side); as a result users can easily
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maintain different pressure levels with their thumb and index fingers.

The combination BC gives the second best performance (~ 84.25%) because users
are able to put pressure on B and C simultaneously just by placing their middle finger
and index finger on the respective sensors. While users apply pressure from the right
side, the placement of the watch body shifts toward left. Although this position shifting
occurs in small scale, it has significant contribution in errors during the experiment.

The next best performance comes from the AC and BD combinations, and it is
almost 79.51%. Here users face difficulty to input different pressures as the sensors are
diagonally opposite to each other. Finally, we get the most erroneous performance in our
study from AD combination and it is ~74.57% on an average. The reason behind this
poor performance is that users can’t maintain balanced pressures on both the sensors
from the left side using their index and middle fingers.

In our experiment, the average completion time for discrete trial was 1.42 sec (SD =
0.18) and it was 1.75 sec (SD = 0.26) for continuous trial.

In feedback session, most of the users mentioned that side pressure sensor based
smartwatch input is easy to learn, easy to press, and it is a promising input modality
for future smartwatches. They were able to control whole pressure event vocabulary in
discrete and continuous mode with an average success rate of 85.16%. In fact, most of

the participants felt more natural and pleasant with the discrete mode of pressure input.

6.5 Application Example

To show the feasibility of our proposed pressure event based input vocabulary, we de-
veloped two applications - photo gallery app and number entry app.

In the photo gallery app, users can zoom-in and zoom out an image by applying
pressure on CD and AB, respectively (see Figure 6.3). They can control zoom-in/out
rate by applying different levels of pressure. For example, light pressure corresponds to

slower zoom-in/out, while strong pressure provides faster zoom-in/out. For continuous
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(b)

Figure 6.3: Photo gallery app: (a) zoom-in an image by pressing CD simultaneously (b)
zoom-out an image by pressing AB simultaneously.

Figure 6.4: Photo gallery app: (a) clockwise image rotation by pressing AC simultaneously
(b) anti-clockwise image rotation by pressing BD simultaneously.

zoom-in/out, they have to apply a certain level of pressure continuously. Similarly,
users have to press AC and BD for rotating an image in a clockwise and anti-clockwise
direction respectively, and it is shown in Figure 6.4.

In number entry app, users can control the caret inside the text box quickly and
precisely using the pressure event vocabulary set. To move the cursor one digit left,

press C lightly, and to move one digit right, just light press D. The cursor movement
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Figure 6.5: Number entry app: press C to move caret toward left.

example is shown in Figure 6.5. After fixing the caret at a particular position, they can

perform ‘delete’ operation using AB combination.

6.6 Conclusion

In this chapter, we investigated the use of side pressure sensors on smartwatch device for
occlusion-free interactions. We presented a working prototype of PressTact and defined
a rich vocabulary of pressure event that can be mapped to many different actions in a
variety of applications. Through a preliminary user study, we showed that the idea is
feasible to use. For the future work, we plan to conduct more extensive user studies in
a real life setting. We will also compare this analog pressure input technique with the

buttons and dials of the existing watches.
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Chapter 7

Conclusion and Future Research

The main contribution of this thesis is the development of a number of novel interaction
techniques and user interface concepts for mobile devices like smartphones and wearable
devices like smartwatches. We observe that the development of mobile and wearable user
interfaces is closely coupled with the evolution of their sensory capabilities. Our goal is
to make a better use of the available sensing capabilities of these devices and provide
suggestions on the types of sensor technologies that could be added to the future devices
in order to enrich their input expressiveness. In this dissertation, we have explored our
research in three promising areas: context-awareness, text input interfaces and input
beyond touch. This chapter summarizes the significant contributions of our work and

future scope of extending the research.

7.1 Contributions

The major contributions of our research work can be summarized as follows.

Chapter 3 presents phone’s context-aware mobile interaction. Here, we propose ‘Sur-
faceSense’, an approach to identify different phone’s placements (i.e. context) using its
built-in sensors such as an accelerometer, gyroscope, magnetometer, microphone, and a

proximity sensor. The contributions of our approach are: (1) don’t need any external
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hardware like [48] [36] [49] (2) faster and energy efficient compare to [50]- [53] (3) able to
identify 13 different phone’s placements with 91.75% accuracy (4) showed how different
applications can be configured dynamically to enhance mobile interaction on the basis

of phone’s current placement.

In Chapter 4, we propose ‘MagiText’ which provides the text entry space beyond
the physical boundaries of a device. It overcomes the problems of virtual keyboard
based typing, for example, long visual search time and fat-finger issue. This approach
uses phone’s magnetometer sensor to recognize 3D space handwritten character ges-
tures. The key idea is to influence the magnetic sensor by writing character gestures in
front of the device using a properly shaped magnet taken in hand. The movement of
this magnet changes the magnetic flux pattern, and it is sensed and registered by the
magnetometer sensor. Then, we classify this flux pattern using machine learning clas-
sifier and identify intended character. The contributions of ‘MagiText’ are: (1) don’t
require any external sensory inputs such as infrared distance sensor [3] [4], RGB cam-
era [5] [6], depth camera [7], electric field sensing [8] and magnetometer [55] [56] (2)
earlier work [55], [56], [57]- [61] didn’t explore the perspective of text entry mechanism

using phone’s buit-in magnetomter sensor, that is really a challenging task.

In Chapter 5, we develop two text entry approaches: ‘ETAO keyboard’ and ‘3D
typing using Hall effect sensors’. In ETAO keyboard, a user can select most frequent
characters with a single tap and remaining characters, numbers and symbols with two
taps. It provides a good trade-off between typing speed and error rate with respect

o [10]- [17]. With 3D typing, users can write text just by drawing character gesture

above the watch face. It is basically a touchless text input approach for smartwatches.

Chapter 6 presents ‘PressTact’ which augments smartwatches with four Force Sens-
ing Resistors (FSR) - two sensors on the left side of a watch and another two on the
right side. It expands the smartwatch’s interaction space beyond its touch screen input

and overcomes visual occlusion problem. We design a pressure event vocabulary set that
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can be used for bi-directional navigation (zooming, scrolling, rotation) on watches. Our
preliminary user study confirms the feasibility of the pressure sensors based smartwatch
interaction technique and also shows that participants can input different pressure lev-
els (light press, medium press, strong press) with an acceptable accuracy. The main
advantage of our technique compared to previous work [64] [18] [67] [20] [69] [22] - [73]
is that ‘PressTact’ requires minimal hardware instrumentation without effecting the
smartwatch form-factor and it has immediate feasibility to fit into square and round

faced smartwatches.

7.2 Future Research Directions

In this dissertation, different interaction techniques suitable for smartphones and smart-
watches have been presented from both design and user study perspective. Further, we
can further explore these interactions in a broader perspective. In the case of phone’s
context sensing based mobile interaction, user’s context can be combined with phone’s
context to develop a number of novel applications. In ADI based text input on a smart-
phone, we only showed our preliminary results of character gesture recognition. In future,
we may try to detect starting and ending point of input character gesture automatically.
On the other hand, the hall effect sensor based smartwatch text entry technique can be
redesigned with IR proximity sensors. Then we don’t need any external magnets. Fi-
nally, we can add postural state of the watch with the proposed pressure sensors based

interaction to enlarge the interaction space.
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